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Abstract—This work focuses on the challenges of 3D surface
registration in MIS applications. A novel dataset has been
created based on CT scans of a knee phantom and pre-operative
3D models of the meniscus are extracted. Four state-of-the-art
3D registration methods are evaluated on the registration of
noisy patches segmented from the models’ surface to the model
itself in an attempt to objectively compare their performance
using ground-truth correspondences. The results of this analysis
provide useful insight on the problem at hand and indicate where
our focus should be steered in order to successfully tackle it.

Index Terms—surface registration, Minimally Invasive
Surgery, pre-operative models

I. INTRODUCTION

There are many existing research works trying to apply

Augmented Reality (AR) in Minimal Invasive Surgery (MIS)

to help overcome some of the current limitations. The general

call is for on-the-fly fusion between other modalities of the

MIS system and the MIS video, creating a composite view that

conveys additional information (such as the location of impor-

tant subsurface structures). In this work, we are performing a

comparative study between different approaches for 3D surface

registration of intra-operative MIS data to pre-operative 3D

models of the anatomical structures of interest. For this pur-

pose, a knee phantom has been employed and a novel dataset

has been created including 3D models of the meniscus, as

well as noisy segments of the models’ surface. This approach

allows for the knowledge of ground-truth correspondences

between the models and the 3D surface segments facilitating

the proposed evaluation procedure. Valuable conclusions are

derived on the usefulness of the examined methods and on

future directions that should be further investigated.
Previous works on MIS data registration can be broadly

divided into two categories, those that tackle the problem with

a semi-automatic approach and those that use a more constraint

and automatic one. In works where a semi-automatic approach

is adopted, either the surgeon roughly aligns the 3D model to

the camera view as an initialization step, or on-tissue artificial

markers are being utilized for assisting the registration process.
Simpfendrfer et al. [1] propose a marker-assisted 2D-3D

point correspondence registration of Transrectal Ultrasonog-
raphy (TRUS ) data to real-time video feed. Custom-developed
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Fig. 1: Healthy (left) and torn (right) meniscus 3D models,

extracted through manual annotation in 3D Slicer software.

needles with colored heads that are placed into the prostate

surface as soon as the organ is exposed play the role of mark-

ers. These navigation aids are segmented in three-dimensional

(3D) TRUS data that is acquired right after their placement

and then are continuously acquired by the surgical navigation

system. The markers are tracked in real time and the registra-

tion between TRUS image and laparoscopic video is computed

through two dimensional to three dimensional (2D-3D) point

correspondences.
Figl et al. [2] constructed a 4D motion model of the heart

and achieved registration in two phases; first, the temporal

alignment is achieved and then the spatial alignment follows.

Spatial alignment is done manually by the surgeon at the

beginning of the procedure, and the correspondence points

are computed based on photo-consistency. Having established

temporal registration from the first phase, the remaining mo-

tion is considered to be rigid apart from possible deformation

of the heart due to breathing function. The main parameters

for the 4D motion model, heart rate, and respiratory frequency

were determined through image processing. By comparing one

of the images of the beating heart within a video sequence with

all the others they were able to determine the parameters using

cross-correlation as a similarity measure. The frequencies were

then found as peaks in the Fourier transform of this function.
Li-Ming et al. [3] present a modified ICP registration

method based on selected on model 3D reference positions. In

the initialization step, an operator selected the surface points

to be traced. Since the 3D surface reconstructed from the

stereo video provided only a partial view of the kidney; the
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Fig. 2: Example annotation (green area) of meniscus anatom-

ical region in 3D Slicer software.

ICP variant approach used firstly estimated the visibility of

the preoperative 3D model in the current view before each

iteration to restrict the point correspondence search only to

the visible area of the organ.

Apart from the semi-automatic methods already described.

there have been many works that adopted an automatic ap-

proach. W. Zeng et al. [4] presented the first method of

large deformation surface 3D registration by solving Beltrami

equations based on describing deformations with quasiconfor-

mal mappings. Their proposed approach is general, globally

optimal, and robust. It can search for the desired registration in

the complete space of diffeomorphisms, such as rigid motions,

isometric transformations or conformal mappings. The global

optimum is determined by the method uniquely up to a 3-

dimensional transformation group, it can handle large surfaces

with complicated topologies.

Pessaux et al. [5] suggested the use of fluorescence videog-

raphy instead of a model for real-time video feed registra-

tion. They proposed the fluorescence-based enhanced reality

(FLER) in which they present the fusion of fluorescence

videography with AR to guide the intestinal resection and

assess the vascular supply at the future anastomotic site.

Oktay et al. [6] proposed the computation and use of an

insufflation model for their diffeomorphic non-rigid registra-

tion, which is a dense matching method driven by the gradient

of local cross-correlation similarity measure. As a first step

the deformations and organ shifts caused by gas pressure as

computed, using a biomechanical model, which is based on the

mechanical parameters and pressure level. This model is used

to achieve an initial alignment with intra-operative images.

This initial registration step accounts for both non-rigid and

rigid transformations caused by the insufflation. The applied

model couples the parameters with an intensity similarity

measure and the finite element method (FEM) registration

methods. At the next step, the diffeomorphic registration takes

places, which has a higher degree of freedom refines the

surface differences between the pre-operative image, warped

according to the biomechanical model, and the intra-operative

image.

II. METHODS

We have researched and applied several automatic surface

registration methods, as described in the next sections, span-

ning from simple rigid registration to more complex techniques

where the deformations of the tissue is taken into account.

A. Point vs surface based registration, and Iterative Closest
Point

As a first attempt traditional ICP algorithms for rigid

registration where tested. Two approaches where researched.

A point based one [7], where the 3D model and the 3D recon-

structed image from the stereoscopic laparoscopic camera are

treated as point clouds with no surface information. Thus, the

registration is treated as a minimization problem, where the

Root Mean Squared (RMS) distance between corresponding

points once aligned has to be minimized.

The second attempt is a variant of ICP [8] where a set

of initial rotation and translation states is used to avoid the

main problem of the ICP algorithm, convergence in local

minima. While the ICP may produce very good registration

results with registration error < 2mm, the time need for

registration is increased dramatically when the number of

points increases, thus making it prohibitive for on-the-fly

registration. An additional disadvantage of such techniques is

that they do not take into account the deformations of the organ

surface due to organ movement or by its interaction with the

surgical instruments. Finally, the basic ICP algorithm does not

produce optimal registration results when the target 3D scene

is occluded (by other tissues or surgical instruments).

B. Optimal Step Non-rigid ICP Algorithm for Surface Regis-
tration

Trying to overcome the aforementioned constraints of the

traditional ICP method, an extension of the ICP framework

to non-rigid registration was also tested [9]. While retaining

the convergence properties of the original ICP algorithm the

optimal step non-rigid ICP framework allows the use of

different regularizations.

The algorithm takes into account various stiffness weights

and respectively deforms the template surface towards the

target one. With this approach, the whole range of global and

local deformations is recovered. For each stiffness weight, the

optimal iterative closest point steps are being used to achieve

the optimal corresponding deformation. For every step at first,

a nearest-point search is being applied in order to estimate the

preliminary correspondences. Then the optimal deformation

of the template is calculated taking into account the fixed

correspondences computed at the first step as well as the

active stiffness weight. This procedure continues iteratively
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Fig. 3: Automatic segmentation of 3D model for ground truth
extraction. The 3D pre-operative model (blue) is segmented in

smaller regions (magenta, green) to simulate occlusions at the

in-operative view.

with new correspondences found by searching from the dis-

placed template vertices. Locally affine regularization is being

applied, by assigning an affine transformation to each vertex

and minimizing the difference in the transformation for the

neighboring vertices.

It is shown that by using this regularization method the

optimal deformation for the fixed correspondences and a fixed

stiffness can be accurately determined with efficiency. The

method achieves very good registration results for a wide

range of initial conditions, whereas it is handling missing data

robustly.

C. Coherent Point Drift point set registration

A related problem to surface-based registration is point

set registration. These two different approaches are used

interchangeably in the literature. Rigorously speaking, surface-

based registration deals with surfaces that have connectivity

information. On the other hand, point set based registration

deals with sets of points without any connectivity information.

The Coherent Point Drift (CPD) algorithm [10], is a proba-

bilistic method utilized for both rigid and non-rigid point set

registration.

The registration problem is being formulated as a prob-

ability density estimation problem, where one point set is

represented using a Gaussian Mixture Model (GMM) and the

other point set is considered as a set of observations generated

according to the aforementioned GMM. The GMM centroids

(representing the first point set) are being fitted to the data (the

second point set) by maximizing the likelihood. The GMM

centroids are being forced to move as a group coherently in

order the topological structure of the point sets to be preserved.

In the rigid case, a closed form solution derived from the

maximization step of the EM algorithm [11] is used for

optimization of the likelihood function, where the parameters

of the GMM centroid locations are being re-configured so the

coherence constrained can be imposed.

On the other hand, in the non-rigid case, the coherence

constraint is imposed by regularizing the displacement field

and using the variational calculus to derive the optimal

transformation. The CPD algorithm can perform with great

accuracy for both rigid and non-rigid transformations and can

cope with the presence of noise, outliers and missing points.

D. Diffeomorphic non-rigid registration of shapes

Diffeomorphisms are broadly used in non-rigid methods for

registration where large deformations are expected. Usually,

the methodology refers to point-set registration methods, but

in [12] authors have shown that diffeomorphisms can be

used to registered 3D shapes also by utilizing a point-set

representation for shapes since statistical shape analysis in

this space is relatively straightforward. A joint clustering and

diffeomorphism estimation strategy was introduced, allowing

the simultaneous estimation of the correspondence and the

fitting of a diffeomorphism between two point-sets.

Basically, within the proposed strategy the centres of the

corresponding clusters for each point-set are always consistent

since they are sharing the same index. In the course of

clustering, the cluster center counterparts in each point-set are

linked by a diffeomorphism and as a consequence are forced

to move in lock-step with one another.

Fig. 4: Examples of segmentations from the constructed

ground truth dataset. For every segmented region a mesh (first
column) and a point-set representation (second column) are

extracted.

III. METHODS EVALUATION

A. Ground truth dataset of meniscus phantom

In order to evaluate the aforementioned methods, an au-

tomatic segmentation framework was developed in the scope

of this work. The 3DSlicer software [13], was used to review

pre-operative CT images of a knee phantom in order to extract

the 3D model of the anatomical structure of meniscus. We had

different meniscus models scanned within the knee phantom
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Fig. 5: Examples of good registration results. The initial positions of the template with respect to the target are shown on the

top row. The corresponding successful registration results with RMSerror < 10−3mm are shown on the bottom row (from

left to right: ICP, optimal step non-rigid ICP, CPD, diffeomorphic non-rigid).

corresponding to various meniscus lacerations as also a sample

corresponding to a healthy meniscus.

All CT images were reviewed and the anatomical structure

of interest was manually annotated within the 3D Slicer

software for each CT image series. An example of annotated

meniscus can be seen in Fig. 2. The corresponding annotations

were used to create a 3D representation of the marked area as

a surface model for every meniscus model as can be seen in

Fig.1. These models are treated as the pre-operative ground-
truth data.

Since the anatomical structure of interest during the MIS

procedure will most probably be occluded during the regis-

tration the need of registering small parts of the pre-operative

model to the field of view was created. The framework we

created can segment the 3D model in smaller areas, extracting

small parts of the surface and keeping information regarding

the initial model and the area where the segment was extracted.

Using this knowledge, we can extract information regarding

the success of the registration by measuring the distance

of the initial vertices of the ground truth model and the

corresponding ones in the surface part that is being registered.

In order to create an appropriate dataset1, we used the

mesh model of a healthy meniscus, extracted through manual

annotation of the meniscus anatomy on every slice inside

3D Slicer software. Using 25 unique random points on the

model as seeds for the segmentation, 50 segmented regions

were extracted that had from 15% to 50% of overlapping

between them. For every seed we used two different values

1The dataset will be made publicly available and the web link will be added
in this footnote upon acceptance of this work

(15mm and 25mm) as radius, to determine the size of the

segmented patch. Every patch was stored both in point-set

and surface form. As an extra feature, noise was added to the

models in order to simulate noisy input data from the On-the-

fly 3D reconstruction of the surgical field. As an initial step

for noise simulation we used a trivariate Gaussian distribution
(μ = 0, σ = 0.6). Where 1σ distance (0.6mm) in each

dimension, corresponds roughly to a total of about 1mm
error distance. The average Root Mean Square (RMS) error

between the points of the produced noisy models and the

points of initial ones is 1.56mm. A sample of the segmentation

result including added noise can be seen in Fig.3. For each

segmented area a point-set and a mesh file are created as well

as a corresponding file containing the IDs of the vertices from

the initial model that are included in the segment, so all the

aforementioned methods (for point-set and surface registration

methods) could be evaluated on the same baseline data.

B. Comperative Evaluation Results
Using the aforementioned dataset all methods described

here were evaluated on the same base. Both point-based and

surface-based methods achieved good registration accuracy in

some cases, whereas they failed at some others. We used RMS
error as a metric to define the correctness of a registration.

Since we have ground truth information for all patches in our

dataset, we can measure the root mean squared distance of

all points/vertices in the template patch to the corresponding

ones of the target surface/point-set. We determined a value

of RMSerror < 2mm to be our threshold for considering

a registration as successful. Besides the noise level, and the

actual size of the segmented region, the initial position of

Authorized licensed use limited to: National Library of Greece. Downloaded on September 30,2020 at 16:26:47 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 6: Examples of erroneous registration results. The initial positions of the template with respect to the target are shown

on the top row. The corresponding unsuccessful registration results with convergence score > 2mm are shown on the bottom

row (from left to right: ICP, optimal step non-rigid ICP, CPD, diffeomorphic non-rigid).

the template point-set/surface with respect to the target was

also parametrized to simulate various initialization errors. The

segmented patch was translated and rotated at random distance

and orientation in all three axes in every iteration, A detailed

evaluation of each approach follows.

1) ICP: This basic approach managed to achieve accept-

able registration results in most of the cases to an average

convergence error (RMS distance) of 1.92mm. Through all

the examined patches of the dataset, ICP achieved a successful

registration in 67.3% of the cases. Although the registration

was successful in the majority of the cases, the time needed

for converging was one of the highest amongst all, since the

average converging time was 2.28sec. The cases where this

approach didn’t achieve acceptable results were due to a large

initial distance between the two point-sets, thus leading to local

minima after a few initial iterations. Despite that, ICP managed

to achieve an acceptable registration even when the template

patch had a distance of 24mm from the target.

2) Optimal Step Non-Rigid ICP: This ICP variant for

surfaces achieved similar results with the simple ICP algorithm

achieving an overall success rate of 72.6%. The time needed

for registration was again too high reaching an average of

2.53sec to complete the registration. The average convergence

error was 1.84mm. The registration was successful in the

majority of the cases, even in those including a high rate of

noise. The cases where this approach didn’t achieve acceptable

results were again due to large initial distance between the

two point-sets, but this method was more sensitive to the

initial distance between the template patch and the target one,

since the maximum distance between the two patches, that this

method achieved a successful registration (RMS < 2mm)

was 13mm.
3) Coherent Point Drift: This approach managed to achieve

the best registration results with an average convergence error

of 1.76mm and an overall success rate of 78.8%. Although the

registration wasn’t successful in all of the cases, it managed

to achieve the lowest registration error amongst all examined

methods. The cases where this approach didn’t achieve a good

result were actually again due to a large initial distance be-

tween the two point-sets, by achieving acceptable registration

with a maximum average distance of 18mm between the two

point sets. The average time for registration was 1.57sec,
which is not yet acceptable for a real-time framework but the

method can be further parametrized trying to reach real-time

registration times.
4) Diffeomorphic non-rigid registration of shapes: This

approach achieved the lowest acceptable registration success

rate of 49.8%, with an average convergence error of 2.63mm.

The time needed for registration was even higher than the ICP

reaching an average of 2.74sec for converging. The average

time needed for convergence was near ICP time, reaching

2.74sec. The initial distance between the two surfaces didn’t

seem to cause any drawback in the registration process since

the maximum distance for which this method achieved an

acceptable registration reached up to 41mm.

C. Overall evaluation results

It is clear by the above analysis summarised in Table I that

a good initialization step is critical for all examined methods.

Samples of successful registration can be seen for every

examined method in Fig.5, whereas examples of erroneous
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TABLE I: OVERALL EVALUATION RESULTS FOR THE 3D REGISTRATION METHODS.

Success Rate % Average convergenceerror (RMS) Maximum initialdistance Average RegistrationTime
ICP 67.3% 1.92mm 24 mm 2.28 sec
Optimal Step Non-Rigid ICP 72.6% 1.84mm 13 mm 2.53 sec
CPD (non-rigid case) 78.8% 1.76mm 18 mm 1.57 sec
Diffeomorphic 49.8% 2.63mm 41 mm 2.74 sec

registrations can be seen in Fig.6. In the majority of the

cases where the registration produced large registration errors

the initial position of the template with respect to the target

was larger than the ones resulting in successful registration.

Regarding this attribute, the Diffeomorphic approach presented

the best results achieving a successful registration at a max-

imum initial distance of 41mm. However, with respect to

other evaluation metrics, CPD is the method of choice since it

achieved on average the lowest RMS error, the highest success

rate, and the lowest execution time. The produced results,

although promising, indicate the need to research further

in the parametrization of the methods in order to improve

them. Another critical point we should investigate further is

the optimization of the registration process with respect of

execution time since the final objective of this framework is

to collaborate in real time with On-the-fly 3D reconstruction

of the surgical field. Moreover, during this preliminary study,

only small deformations of the template surface/point-set were

examined. It is crucial to examine larger deformation since the

organ surface during the surgical process will undergo large

deformations due to interaction with the surgical instruments.

IV. CONCLUSION

This study describes the comparative analysis of the per-

formance of state-of-the-art 3D registration methods when ap-

plied on MIS pre-operative data and simulated intra-operative

data. The main motivation for not using actual MIS data is

the difficulty of establishing ground-truth correspondences for

evaluation of the methods. Instead, we adopted a methodology

for deriving surface patches from the pre-operative models

and introduce noise into their structures. During this study,

we focused the evaluation in rigid transformations, and there

is a possibility that this is the reason the point-set to point-

set methods outperformed the surface to surface ones. An

interesting conclusion is that, as indicated by the results, non-

rigid methods can achieve superior performance even for this

type of transformation. In the future, we aim to add non-rigid

samples in the ground truth dataset, containing a scale of small

to large deformations, examining whether in those cases the

surface to surface registration methods will be more dominant.

As a result of applying the evaluated methodologies to our

ground truth dataset, we have identified the main problems

encountered in MIS registration and broke them down into

steps for future examination. Another important note we have

extracted from this comparative study is the need to modify

these methods for performing in real time. As a next step,

we are planning to create a larger dataset, which will include

models from different meniscus types, but also different types

of organs, in order to be able to evaluate the examined methods

in a more complete aspect. In this extended dataset, we intend

to add different types and amounts of noise and address large

deformations.
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