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Abstract— The stability of a robot subject to active con-
straints under the exertion of a human force is analyzed.
Artificial potentials that are used to create a barrier on
constraint surfaces are revisited and the robot’s stability in the
presence of active constraints is examined in terms of output
passivity and state boundedness. It is shown that under input
forces of finite energy the state is bounded and hence the motion
is confined within the constraint region. However, the quality
of response depends on the type of input and may include
undesirable transients for physical human robot interaction
(pHRI) applications.

I. INTRODUCTION

In intentional pHRI tasks like kinesthetic guidance, an
important key issue that needs to be addressed by the robot’s
controller concerns the robot’s quality-of-performance. To
this aim the notion of active constraints or virtual fixtures
was introduced that enhances pHRI performance in terms
of precision, cognitive load and user effort. Active con-
straints were firstly introduced in tele-robotic manipulation
[1], [2], [3] and have been utilized in surgical [4], [5], [6],
[7], industrial [8], [9], or even in underwater robotic tasks
[10]. They encourage motion inside a constraint region by
acting repulsively away from forbidden regions thus avoiding
obstacles in set point robot control problems [11] or assisting
the user in pHRI tasks. They have also been used in region
reaching control methods which is a generalization of the
set point control problem; region reaching is needed in
visual servoing to ensure that all features are within the
field of view during motion [12],[13]. Active constraints are
mostly imposed via artificial potential functions that repel the
motion away from the constraints. Regarding the system’s
stability characteristics, most of the robotic’s literature only
partially analyze it. In pHRI related papers the analysis is
confined to the proof of the system’s passivity with respect
to the system velocity output. In the set point and region
reaching control problem, the stability analysis is confined
to the goal’s global asymptotic stability without considering
the effect of external inputs that may arise from noisy
state measurements, unintentional contacts and/or human
kinesthetic guidance forces. The latter appears in cases of a
robot under impedance control without inertia shaping with
known task related equilibrium.
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In this work, we analyze the stability of a robot subject
to active constraints under the exertion of an external input
like a human guidance force. Issues of passivity, constraint
satisfaction and state boundedness are examined and demon-
strated via the simulation of a two dof revolute prismatic
manipulator. The analysis makes use of the findings regard-
ing the characterization of integral input to state stability
reported in [14].

II. A SURVEY ON THE ARTIFICIAL POTENTIALS
FOR CONSTRAINT SATISFACTION

Consider a point-mass robot moving within an m-
dimensional space, e.g., the end-effector of a manipulator
moving in 3-dimensional task space, or the configuration of a
manipulator in C-space. Let the m-dimensional space include
a restricted region defined as a closed set O ⊂ Rm, which
should not be violated by the robot e.g., an obstacle. Let
p ∈ Rm be the generalized position of the robot.

A common approach for constraint satisfaction or collision
avoidance is the utilization of Artificial Potential (AP) fields
that create a barrier on the constraint surfaces and become
negligible beyond. APs are positive scalar functions of a
distance metric d(p) : Rm 7→ R≥ from the constraint
boundary of O, being zero on the boundary. The minimum
Euclidean distance between the robot position p and the
restricted region O, is often utilized :

d(p) = min
p∗∈O

√
(p− p∗)T (p− p∗). (1)

AP fields Vc(d(p)) =Vc(p) are designed within the
constraint-free space Ω = Rm−O, and usually fall within a
category characterized by the following properties:

• Vc(p) is a continuous differentiable function, ∀p ∈ Ω
• Vc(p) ≥ 0, ∀p ∈ Ω
• Vc(d(p)) → ∞ if and only if d(p) → 0
• There exists a minimum-value set S = {p ∈ Ω :

∂Vc(p)
∂p = 0}

To impose a constraint related artificial potential field, the
following control signal is applied uc ∈ Rm :

uc = −∂Vc(p)

∂p
. (2)

In the case of robot kinesthetic guidance, the control signal
usually contains a gravity compensation term ug and an
additive dissipative force term of the form

ud = −Dpṗ (3)



with Dp ∈ Rm×m being a positive constant matrix. In case
the robot is desired to autonomously reach a position target,
a potential that is attractive to the goal pT is added to the
system (e.g. ∥p− pT ∥2) and applied via an extra control
signal. In this work we are interested in the stability analysis
of the robot under an input guidance force exerted by the
user in the presence of virtual constraints. Before motivating
our work we briefly present the APs and respective control
signals that have been proposed in the literature for constraint
satisfaction.

One of the first works based on this approach was intro-
duced by Khatib et al. [11], [15], In [15], the following AP
function is proposed:

Vc(p) =


k

2

(
1

d(p)
− 1

d0

)2

if d(p) ≤ d0

0 otherwise
, (4)

where k > 0 is a constant parameter and d0 ∈ R> is the
distance determining the area-of-influence of the potential
field. Let us denote by A this area of influence, A = {p ∈
Ω : ∂Vc(p)

∂p ̸= 0}. Hence, the minimum-value set S = Ω −
A. We get the control signal (2) by differentiating (4) with
respect to p :

∂Vc(p)

∂p
= −

k

(
1

d(p)
− 1

d0

)
1

d(p)2
∂d(p)

∂p
if d(p) ≤ d0

0 otherwise
.

(5)
Multiple restricted regions Oi ⊂ Rm, with i = 1, .., n

can be easily accommodated by superimposing the AP fields
and summing their respective gradients in the control. The

constraint-free space is then given by Ω = Rm −
n∪
i

Oi.

An example utilizing the potential function (4) for two
constraints in a 2-D world produced by adding the individual
potentials is illustrated in Figure 1, for spherical obstacles
(Figure 1.a and b) and planar constraints (Figure 1.c and d)

Remark 1. A simplified version of the potential defined

in (4), utilized in [16], is V s1
c (d(p)) = k

1

d(p)
, with the

respective control signal being active in the entire state space
since ∂V s

c (d(p))
∂p → 0 only when d(p) → ∞. Then, the

minimum value set S is empty. It is utilized to shape an
attractive potential to a goal pT , as shown in Figure 2 but
yields a combined potential that is not minimum at the target.

Other types of AP fields, utilized for joint limit avoid-
ance in [17], combine logarithmic functions in a non-linear
fashion:

Vc(p) =
k1
2
(VL1 − VH1)

2 + ...+
km
2
(VLm − VHm)

2, (6)

with ki ∈ R>, i = 1, . . . ,m positive parameters, and

VLi(pi) = ln d(pi), VHi(pi) = ln d(pi), i = 1, ...,m, (7)

with p = [p1, ..., pm]
T being, in this case, the joint positions

of the robot, m being the degrees of freedom and

d(pi) = pi − p
i
, d(pi) = pi − pi, (8)
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Fig. 1: Examples of AP fields.

Fig. 2: Shaped attractive potential (red line) by the AP
kd(p)−1 (blue line).

being the distance form the lower p
i

and higher pi joint limits
respectively. By differentiating Vc(p) w.r.t. p, we get:

∂Vc(p)

∂pi
= ki(VLi − VHi)

pi − p
i

(pi − p
i
)(pi − pi)

, (9)

which is used in (2). Figure 3 illustrates the AP field in this
case. Notice that Ω forms an m-dimensional hyperrectangle
in the joint space and ∂Vc(p)

∂pi
is zero only at p = pe =

p+p

2
which is the centroid of the hyperrectangle.

A similar approach considering ellipsoidal obstacle avoid-
ance is presented in [18], for a robotic system driven to a
desired target by a linear second order dynamical system.
It is shown that when the obstacle avoidance signal acts
alone, there is a compact set of local minima S in which
∂Vc(p)

∂p = 0. Figure 4 illustrates the AP field in case of two
obstacles in a 2-D world. Notice that S forms a 1-D curve
between the boundaries of O1 and O2.

III. MOTIVATION

Consider a N-dof non-redundant manipulator working on
an N-dimensional operational space (joint or end-effector
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Fig. 3: Joint limit avoidance AP field.

Fig. 4: Obstacle avoidance AP field, based on PPC.

space), in which the virtual constraints should be imposed,
with gravity compensation, an additive dissipative force and
virtual constraint control under the kinesthetic guidance of
the human force. The dynamic model of the system is:

Λp(p)p̈+ (Cp(p, ṗ) +Dp) ṗ− uc = Fp, (10)

with Fp ∈ RN being the generalized human force input to
the system mapped appropriately in the operational space,
Dp ∈ RN×N a positive definite diagonal matrix representing
a virtual dissipation, Λp(p) ∈ RN×N the inertia matrix,
Cp(p, ṗ) ∈ RN×N the Coriolis and centripetal matrix, and
uc ∈ RN is a constraint control signal (2) that is intended to
confine the robot position in the constraint-free space Ω =
RN−O where O ⊂ RN . Notice that Λp is positive definite
and the matrix Λ̇p − 2Cp is skew symmetric, assuming a
non-singular and one-to-one mapping between the velocities
on the joint space and the operational space of interest.

Our aim, is to analyze the state boundedness of this system
and consequently the constraint’s satisfaction. Most of the
robotic’s literature only partially analyze the stability of
this system; in pHRI related papers the stability analysis
is confined to the proof of the system’s passivity with
respect to the system velocity output, while in the regulation
problem which includes an attractive potential to the goal
pT [11], the stability analysis is confined to the goal’s global
asymptotic stability without considering the effect of inputs
like the external force Fp. The latter appears in many cases
including noisy state measurements, unintentional contacts
and kinesthetic guidance of a robot under impedance control

without inertia shaping with known task related equilibrium.
In general, as shown in [14] the system fails to satisfy the ISS
criteria. Motivated by [14], we have simulated a Revolute-
Prismatic (RP) manipulator with joint variables p = [θ r]T

with the joint space being the operational space (Fig. 5). Its
inertia and Coriolis matrix is given below with M denoting
the first link’s mass at a distance L and m the mass of second
link.

Λp(p) =

mr2 +
ML2

3
0

0 m

 ,Cp(p, ṗ) = mr

[
ṙ θ̇

−θ̇ 0

]
.

Fig. 5: Revolute-Prismatic (RP) manipulator

We impose joint limit virtual constraints via four potentials
of the type (4) with respective gains kθ = 100, kr = 100
and influence distance d0 = d0 = 2.09 × 10−2 (rad or m)
to impose bounds r = 0 m, r = 1 m, θ = −π

3 rad, θ = π
3

rad, in the joints q ∈ {θ, r}, thus constrainig bilaterally each
joint variable as depicted in Fig. 6. Hence, the constraint
control signal (5) is applied. We consider an external force
fext applied by the user in the end of the first link (Fig. 5),
which yields only a torque in the first joint, hence Fp =
[τext 0]

T , with τext shown in Fig. 7 given by:

τext =


3 if τ1 > 3

τ1 if − 3 ≤ τ1 ≤ 3

−3 if τ1 < −3

(11)

where τ1 = 10 cos
(
2πT

(
γ

t
T − 1

)
f0

ln(γ)

)
with T = 100

sec being the total duration of simulation, γ = fT
f0

∈ R+

with f0 = 1Hz, fT = 0.2Hz being the initial and final
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Fig. 6: The artificial potential with bilateral joint constraints.
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Fig. 7: Input signal. (a) First 5 seconds, (b) last 10 seconds.

frequencies respectively. We have simulated the system in
MATLAB utilizing ode15s with values ML2 = 0.1Kg×m2,
m = 1.5Kg, Dp = diag([2 1]) from initial state p(0) =
[0 rad 0.3 m]T including the case of the prismatic joint
being controlled to stay at its initial position via the control
signal −0.95(r − r(0)). Figure 8 shows the response of
joint positions without (Fig. 8.a) and with (Fig. 8.b) position
control in r. Notice the nonlinear resonance behavior in both
cases that leads the prismatic joint r to the constraint even
when it is position controlled.
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Fig. 8: Joint variable θ and r response with τext input (a) case
of pure damping (b) case of a position controlled prismatic
joint.

IV. STABILITY ANALYSIS

In the stability analysis, we investigate the system’s output
passivity and zero-output dissipativity, the asymptotic stabil-
ity of the unforced system’s equilibrium set and the system’s
state boundedness and output passivity when the external
input is of finite energy last concluding with a discussion
on the consequences of our findings. To proceed with the
stability analysis, we initially write system (10) in state-
space. To this purpose we define ξ = Vc(d(p)) as an internal
system state and utilizing the state vector s = [pT ṗT ξ]T

we can write system (10) in state-space as follows:

ṡ = h(s,Fp), s0 = s(t0) ∈ D (12)

where
D = {s : s ∈ Ω× RN × R}

h(s,Fp) =

 ṗ
Λ−1

p (−(Cp +Dp)ṗ+ uc + Fp)
−ucṗ

 .

Theorem 1. Under the exertion of an external generalized
human force Fp, the system (12) is

1) strictly output passive,
2) zero-output dissipative

with respect to the output ṗ, ∀t ∈ [t0, τ ] where τ ∈ (t0,∞).

Proof. Function h(s,Fp) is continuous in t and locally
Lipschitz with respect to s. Owing to Theorem 3.1 in [19],
there exists some τ > t0 such that the state equation
ṡ = h(s,Fp) with s(t0) = s0 has a unique solution in a
maximal time interval [t0, τ ] with τ ∈ (t0, ∞) .
We assume the following candidate Lyapunov-like function:

V =
1

2
ṗTΛpṗ+ Vc(d(p)) ≥ 0. (13)

Taking the time derivative ∀t ∈ [t0, τ ] of (13) yields

V̇ =
1

2
ṗT Λ̇pṗ+ ṗTΛpp̈+

∂Vc(d(p))

∂p
ṗ. (14)

Substituting Λpp̈ from (10) in (14), and utilizing the skew-
symmetry of matrix

(
Λ̇p − 2Cp

)
, yields:

V̇ = −ṗTDpṗ+ FT
p ṗ ≤ FT

p ṗ, ∀t ∈ [t0, τ ]. (15)

Hence, system (12) is strictly output passive for t ∈ [t0, τ ].
Rewriting (15) by completing the squares, yields:

V̇ =− ||
√
Dpṗ− 1

2

√
D−1

p Fp)||2 +
1

4
FT

p D
−1
p Fp

≤1

4
FT

p D
−1
p Fp, ∀t ∈ [t0, τ ].

(16)

Notice that Fp is caused by the force applied by the human
to the robot. Thus, Fp and FT

p D
−1
p Fp are bounded functions

of time. Hence, we can find a K-function γ such that

V̇ < γ(|Fp|), ∀t ∈ [t0, τ ]. (17)

Therefore according to Definitions 2 and 3 in the Appendix,
the system is zero-output dissipative for all t ∈ [t0, τ ].

Theorem 2. For the unforced system (12):

ṡ = h(s,0N×1), s0 = s(t0) ∈ D (18)

1) There is a compact set D1 ⊂ D which is positively
invariant with respect to (18).

2) the equilibrium se = [pT
e 01×N 0]T where pe ∈ S is

globally asymptotically stable.

Proof. Function h(s,0N×1) is continuous in t and locally
Lipschitz with respect to s. Owing to Theorem 3.1 in [19],
there exists some τf > t0 such that the state equation



ṡ = h(s,0N×1) with s(t0) = s0 has a unique solution in
a maximal time interval [t0, τf ] with τf ∈ (t0, ∞) .
Consider the following candidate Lyapunov-like function:

V =
1

2
ṗTΛpṗ+

1

2
Vc(d(p)) +

1

2
ξ ≥ 0. (19)

Taking the time derivative of (19) yields

V̇ =
1

2
ṗT Λ̇pṗ+ ṗTΛpp̈+

∂Vc(d(p))

∂p
ṗ. (20)

Substituting Λpp̈ from (10) in (20), and utilizing the skew-
symmetry of matrix

(
Λ̇p − 2Cp

)
, yields:

V̇ = −ṗTDpṗ ≤ 0, ∀t ∈ [t0, τf ]. (21)

As V̇ is negative semidefinite and V is lower bounded by
zero we can conclude the boundedness of ṗ(t) and ξ(t) for
all t ∈ [t0, τf ]. Thus, there exist compact sets Ωξ, Ωv such
that ξ ∈ Ωξ ⊂ R and ṗ ∈ Ωv ⊂ RN for all t ∈ [t0, τf ].
Furthermore, ξ ≤ ϵi for some positive constant ϵi, which
implies a bounded p along the gradient direction, hence p
will not reach the boundary of the constrained region. When
p ∈ S, i.e. uc = 0, as well as in the orthogonal space of uc

it is possible to prove using the system’s kinetic energy that
the velocity norm ||ṗ|| will exponentially converge to zero
which implies that p will converge to pe ∈ S, according to
Lemma 2 (Appendix). Therefore the system (18) is 0−GAS
for all t ∈ [t0, τf ] and p evolves in Ω1 a compact subset of Ω.
Consequently, s(t) ∈ D1 , Ω1×Ωv ×Ωξ, a compact subset
of D for all t ∈ [t0, τf ]. Using Theorem 3.3 in [19] we can
conclude that τf can be extended to ∞ and the solution s(t)
of (18) lies entirely in D1, thus completing the proof.

Remark 2. The above result is similar to that obtained in
region reaching control with motion constraints examined in
[12]

Theorem 3. Consider the system (12) under the exertion of
a generalized human force with finite energy Fp ∈ L2. The
following statement is valid: The system (12) is integral input
to state stable (iISS).

Proof. Invoking Theorem 4 of the Appendix, given Theorem
1 and 2 we conclude that the system (12) is iISS ∀t ∈ [t0, τ ].
Hence, there exists a function ρ ∈ KL and ρ1, ρ2 ∈ K∞ such
that for all t ∈ [t0, τ ]:

|s(t, s0,u)| ≤ ρ(|s0|, t) + ρ1(

∫ t

0

ρ2(|Fp(τ)|)dτ). (22)

Thus, s(t) is bounded under the exertion of finite energy
human force for all t ∈ [t0 τ ] or otherwise there exist a
compact set D′ ⊂ D in which every solution s(t) of (12) lies
for all t ∈ [t0, τ ]. Using Theorem 3.3 [19] we can conclude
that τ can be extended to ∞ thus concluding the proof.

Lemma 1. Consider system (12) under the exertion of a
generalized human force with finite energy Fp ∈ L2. Then
(12) is

1) strictly output passive,

2) zero-output dissipative
with respect to the output ṗ, ∀t ∈ [t0,∞).

Proof. This is an immediate consequence of Theorem 3 and
Theorem 1.

To demonstrate the results we have simulated the RP-
manipulator for both cases under the exertion of a truncated
external input τext at time tr = 72 as shown in Fig. 9.
The joint position response shown in Fig. 10 is clearly
bounded. Notice the different time scales utilized for clarity.
Nevertheless, it is desirable in practice to avoid driving the
unaffected link to its limit or induce oscillatory responses as
shown in the response of r in the first and second case. To
this aim one should be able to characterize and avoid the
inputs that would invoke such responses.
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Fig. 10: Joint variable θ and r response with finite energy
input (a) case of pure damping (b) case of a position
controlled prismatic joint

V. CONCLUSIONS
In this work we analyzed the output passivity and state

boundedness of a robot under active constraints driven by the
human force. It is proved that forces of finite energy guar-
antee state boundedness and hence constraint satisfaction.
However, the response quality depends on the excitation of
nonlinear resonance phenomena that occur in the presence
of certain inputs and are undesirable in cases of pHRI.



VI. APPENDIX

A. Convergence property

Lemma 2. Suppose f : [0,∞) → Rw and satisfies ≤
|f(t)| ≤ ne−λt ∀t ∈ [0, ∞) where n, λ > 0. Then

∫∞
0

f(t)dt
converges.

Proof. Since we have 0 ≤ |f(t)| ≤ ne−λt ∀t ∈ [0, ∞)
and

∫∞
0

ne−λtdt converges, by the comparison principle (see
definition 1) we obtain that

∫∞
0

|f(t)|dt is convergent, thus
using the fact that absolute convergence of the improper
integral implies convergence, we have that

∫∞
0

f(t)dt con-
verges.

Definition 1. Comparison Principle
If 0 ≤ z(x) ≤ b(x) for all x ∈ [0,∞) and

∫∞
0

b(x)dx
converges then

∫∞
0

z(x)dx converges .

B. Preliminaries about integral Input-to-State Stability

Consider the system

φ̇ = W(φ,u),φ0 = φ(t0) (23)
y = H(φ)

where φ ∈ Rn is the state, y ∈ Rp is the output and u ∈ Rm

is the input of system (23). Let us further assume that the
map W : Rn×Rm → Rn is locally Lipschitz, and the output
is a continuous map H : Rn → Rp with H(0n×1) = 0p×1.

Definition 2. ([14]) The system (23) is said to be smoothly
dissipative if there exists a continuously differentiable,
smooth and positive semidefinite function V (φ) (called the
storage function) together with a γ2 ∈ K and a continuous
positive definite function a1 such that

∇V f(φ,u) ≤ −a1(|y|) + γ2(|u|), (24)

for all φ ∈ Rn and all u ∈ Rm.

Definition 3. ([14]) The system (23) is zero-output
(smoothly) dissipative, if (24) holds with y = 0p×1 , i.e.,
if there exists a (smooth) proper and positive definite V (φ),
and an γ3 ∈ K, so that

∇V f(sm,um) ≤ γ3(|u|), (25)

for all φ ∈ Rn and all u ∈ Rm.

Definition 4. ([14]) The system (23) is said to be 0-GAS if
the 0-input system:

φ̇ = W(φ, 0) (26)

is globally asymptotically stable (0-GAS).

Theorem 4. ([14]) When the system (23) is zero-output
(smoothly) dissipative and 0-GAS then the system is iISS
(integral Input-to-State Stable)

Theorem 5. ([20]) If the system (23) is iISS there exist
function β2 ∈ KL and µ1, µ2 ∈ K∞ such that

|s(t,φ0,u)| ≤ β2(|φ0|, t) + µ1(

∫ t

0

µ2(|u(τ)|)dτ). (27)
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