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Abstract—Hand pose estimation is recognised as being one of
the most challenging topics in the field of human pose estimation.
Accurate estimation and tracking of multi degree of freedom
hand joints can be beneficial to many research areas such as
robotic tele-manipulation, motion patterns, robotic hand design
and, more generally, human computer/robot interaction. Current
solutions to hand tracking are unsatisfactory due to numerous
simplifications used in modeling of the hand kinematics and
noise-prone hand and finger position sensing methods. In this
paper, we propose alternative hand pose sensing approach that
includes detecting palm shape in order to more accurately
estimate joint angles of middle and index fingers and thumb.
We use Inertia Measurement Unit (IMU) sensors on the palm to
detect forming of palm arches in different fingers and thumbs’
poses. Principal component analysis as well as Dynamic Neural
Networks are utilized to create three different models for fingers
and thumb poses, while Polaris optical motion capture system
is used as a ground truth. Validating through the unused data
shows that using the palm shape as an additional parameter in
hand tracking can estimate the hand digit joint angles with the
average error of under 4.1%.

Index Terms—Finger tracking tracking, Palm Shape, Machine
Learning, neural networks.

I. INTRODUCTION

Human hand is by far one of the most sophisticated tools
in nature. Thanks to its intricate mechanisms, we are capable
of creating a variety of power and precision grasps neces-
sary to interact with our environment [1]. Understanding the
mechanisms behind this variety of movements is of paramount
importance in many applications such as healthcare engineer-
ing, rehabilitation, ergonomics, education, entertainment and
robotics, among others. Precise and accurate hand motion
tracking is undoubtedly a prerequisite for better understanding
of human hand kinematics and grasp recognition.

Most hand modelling approaches consider the hand as a
mechanism formed by independent rigid bodies connected to
the palm, which represents an extra rigid link [2]. The palm
itself is a flexible body comprised of a set of connected rigid
bodies [3] and has a crucial role in finger and thumb motion.
The current literature does not consider a potential of detecting
palm to improve accuracy of hand tracking.

This paper describes the development related to detecting a
palm shape to improve accuracy of tracking hand digits. We
propose a model based on Dynamic Neural Network (DNN)
for accurate finger and thumb motion tracking which also takes
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Fig. 1. Proposed Sensing Network. (left: IMU sensors on the palm, right:
Reflective–IR markers on the fingers used as a ground truth).
* Inputs are one step delayed compared to the outputs

palm deformation into account. We use IMU sensors placed on
the palm and the fingers’ and thumb’s phalanges to estimate
more accurately the digits’ pose. Figure 1 shows a conceptual
overview of the proposed architecture.

II. RELATED WORK

A growing body of literature has investigated human pose
estimation for variety of purposes ranging from human com-
puter interfaces and medical applications to security use cases
[4]. Technologies for pose estimation can be classified in
vision-based [5] and wearable motion capture systems [6].
A recent survey of using computer vision methods for hand
pose estimation can be found in [7]. Wearable technologies
for hand tracking span from mechatronics devices that convert
motion into electrical signals to small sensors that can fit on the
hand. Their typical shortcomings include a lack of adjustment
to different hand sizes, difficulties in aligning mechanisms to
hand joint axis and movement of the sensors attached to the
skin. Vision-based methods, although having the benefit of
being non-contact, suffer from occlusions and noise [7].

Various neural network architectures have been suggested
for motion estimation and prediction such as general regres-
sion neural network (GRNN) [8], adaptable neural networks
[9], deep learning [10], and recurrent neural networks [11].

Hand pose estimation, which includes fingers, thumb, and
wrist motion tracking, has numerous applications in the field
of patient motion analysis, virtual reality, tele–operation of
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robotic master slave systems, and surgical robotics [4], to
name the few. In synergy based tele–operation applications,
for instance, reliable estimation of the finger, thumb and wrist
joint angles play a key role in success of operation. However,
the hand’s complex structure and articulation make its pose
estimation more challenging compared to the whole body pose
estimation [10].

A wide range of commercially available hand tracking
devices have been designed for gaming and virtual reality [12].
These devices utilise various soft resistive sensors or IMUs
with the rotational accuracy of up to 0.01 degrees [13], while
some also integrate haptic feedback [14]. However, accurate
estimation of hand joints, particularly in the thumb are still an
open issue.

In the literature, only a few studies considered palm shapes
in relation to hand kinematics. A bio-mechanical analysis of
the inner palm arches related to two power grasps (spherical
and cylindrical) as well as other factors that change the shape
of the hand such as the grasped object size and the location
of an object in the hand was performed by [15].

In another study [16], the authors recognised the impor-
tance of the palm degrees of freedom when designing hand
rehabilitation exoskeletons. They analyzed the role of the
palm in a series of activities of daily living and subsequently
designed a hand exoskeleton with active thumb joints which
allows complex hand shaping. The movements exerted by this
exoskeleton help the user to create palm arches that can not be
supported by most exoskeletons that only actuate hand digits.

Tracking palm is particularly interesting for gesture recog-
nition. In [17], the authors used photo-reflective sensors and
a Leap Motion sensor to detect deformations of the dorsal
side of the palm. Support Vector Machine (SVM) algorithm
was used for collected data classification with 99.5% accuracy.
Similarly, [18] used an RGB camera and a depth camera
to estimate gestures based on palm and finger shapes while
interacting with objects in virtual environments.

Palm shape was also explored as a biometric recognition
feature [19] using a depth camera (Kinect) and a machine
learning algortihm to classify the collected hand features.
A similar classification task, only with additional geometric
palm parameters - perimeter and convex area of the palm,
was performed by [20]. The aim of the research was to
identify a surgeon in the operating room just from his/her
palm shape. Additional palm features such as depth of palm
centre, horizontal cross-sectional area and a radial line length
over the palm shape were similarly utilized by [21] to identify
a person from the 3D shape of the palm.

Although considerable research in hand/finger tracking have
been reported, a palm shape has so far not been used as
an additional source of data for improving hand tracking
accuracy. Given the lack of research in this direction, the main
contribution of this paper includes:

• an optimized sensing architecture for palm shape detec-
tion

• a test-bed for collecting high quality thumb, finger and
palm pose data sets

TABLE I
DEGREES OF FREEDOM OF EACH JOINT IN THE THUMB, MIDDLE AND

INDEX FINGER

Digits Type of joint DOFs

Index, Middle, Ring, Little
Distal Interphalangeal (DIP) 1

Proximal Interphalangeal (PIP) 1
Metacarpophalangeal (MCP) 2

Thumb
Interphalangeal (IP) 1

Metacarpophalangeal (MCP) 1
Carpometacarpal (CMC) 3

• finger and thumb pose estimation using dynamic neural
networks and Principal Component Analysis (PCA)

• evaluation of the proposed tracking method using North-
ern Digital Inc.(NDI)’s Polaris motion capture system.

III. HAND AND PALM KINEMATICS

The dexterity of a human hand is, to a great extent, caused
by the complex structure of its bones, muscles and tendons.
However, to avoid extra complexity, only the skeletal structure
of the hand is considered for this study. The skeletal parts of
the human hand and related abbreviations are shown in table
I [22].

In this work we utilized a skeletal kinematic model which
models phalanges as rigid links and finger and thumb joints as
joints of the kinematic chain with different degrees of freedom
Degrees of Freedom (DOF). From previous studies we know
that fingers and thumb have 21 DOFs. Due to the opposable
nature of the thumb, 5 of 21 DOFs are produced by the thumb,
and 4 DOFs by each finger [23]–[25]. See Table I for DOF of
each joint of fingers and thumb.

Consequently, human hand can be difficult to model requir-
ing multiple sensing points to track 21 DOFs independently.
However, the DOFs can be reduced due to the fact that some
fingers typically move together, either because the central
nervous system simplifies their control by actuating several
joints at the same time, or certain tendons move more than
one finger at the time. This allows reduction of the model and
tracking complexity [26].

Hand palm, according to Ref. [15], can form 3 different
arches defined as Distal transverse, formed by the MCP of
the little, ring, middle and index fingers; Longitudinal,from
the MCP of the middle finger to the crease of the wrist; and,
Oblique, that is the concave curvature formed between the
thumb and the other 4 fingers (See Figure 2).

The arches are used to model an estimator of palm shape
which consequently predicts finger and thumb joint angles. It
is worth mentioning that palm arches are analyzed indepen-
dently and the relation between them goes beyond the scope
of this paper.

IV. METHODOLOGY

In this section, the proposed data acquisition methodology is
explained for ground truth data collection as well as IMU data
collection. In addition, a neural network model is suggested
to estimate the finger joint angles given the collected data.
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Fig. 2. ”Arches of the hand: distal transverse, longitudinal and oblique” [15]

Fig. 3. (Top) IMU sensors and Ground truth markers location (Middle
finger). (Bottom) Palm IMU sensors location

The absolute orientation of the links and palm shape
recorded by IMUs are used to estimate MCP joint angle
of the middle and index fingers, and the CMC joint of the
thumb. Reference values of these angles are acquired by a
motion capture system (Polaris, NDI). Fig. 3 illustrates our
experimental setup including the bespoke 3D printed tools for
Polaris markers and 3D printed IMU sensor holders.

A. Ground Truth using Polaris motion capture system

For a global 3D orientation of the palm, fingers and thumb,
a specific set of tools for Polaris reflective infrared markers
has been designed and attached to the fingers, thumb and
palm (see Fig. 1). Polaris Spectra [27] motion capture system

Fig. 4. Absolute orientation of the Index finger (Top), and Palm (Bottom)
recorded by Polaris

tracks the markers in 6–DOF and acquires their pose using a
proprietary ’NDI track’ software. The pose data captured using
sawNDITracker library from Computer-Integrated Surgical
Systems and Technology (CISST) [28] are published in Robot
Operating System (ROS). Assuming PC

f and PC
p as poses

of the three hand digits and the palm in the camera frame,
respectively, Pf represents a finger or thumb pose with respect
to the palm. Fig. 4 shows sample data of the index finger
movements.

B. IMU sensor data collection

Five BNO0555 IMU sensors from Bosch [29] are placed on
the three digit phalanges and the palm. A custom data acqui-
sition board is designed with an ARM Cortex–M0 processor
equipped with an 8–channel I2C switch, PCA9548A [30].
Orientation data acquired by the IMU sensors are sent to a PC
running ROS on Ubuntu 16.04. Specific ROS nodes are parsing
messages coming from the data acquisition board and pub-
lishing them as time stamped ROS topics, performing frame
transfers, and synchronizing all the messages from Polaris and
IMUs. Polaris tracks the markers at the rate of 50Hz, and the
IMU sensor board samples the data at 100Hz. Orientations of
the hand digits and the palm are represented as quaternions
since this is a more consistent way than using Euler angles
which suffer from Gimbal lock problem and discontinuity
when crossing π values. Assuming q = [qx, qy, qz, qw] as a
quaternion value, qr describes a relative quaternion for each
joint.

1) Sensor location: Location of the sensors in our experi-
ments are as follows:

1) Middle finger angle estimation
• Polaris markers over the MC and the PP of the

middle finger
• IMU over the MC and the PP of the middle finger
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• IMU over the pivot points of the longitudinal arch
2) Index finger angle estimation

• Polaris markers over the MC and the PP of the index
finger

• IMU over the MC and the PP of the index finger
• IMU over the distal palmar part of the MC bone of

the index finger
• IMU over the palmar part of the wrist

3) Thumb angle estimation
• Polaris markers over the wrist and the MC of the

thumb
• IMU over the wrist and the MC of the thumb
• IMU over the distal palmar part of the MC bone of

the thumb
• IMU over the palmar part of the wrist

Two data sets of approximately 2500 samples for each finger
and the thumb have been collected and split into two data sets
for training and testing.

• In the first stage (exp. 1), the MCP joint angles of
the middle and index fingers are estimated using the
measurements of the absolute orientation of the MC and
PP links (Figure 3a). For the thumb, the CMC joints
angles are estimated using the wrist and the MC link
absolute orientation. They are measured by IMU sensors
located over the mentioned links.

• In the second stage (exp. 2), the same angles are mea-
sured using the palm shape information acquired by IMU
sensors placed over the palm surface as shown in Figure
3.

• In the third stage (exp. 3, 3A, and 3B), the first and
second stage estimated data are combined.

C. Comparison of Neural Network models

Two different neural network architectures with different
number of layers were assessed for accuracy:

• A1: Feedforward Neural Network for each dimension of
data (roll, pitch, yaw), 1 input layer, 1 sigmoid hidden
layer with N neurons, and 1 linear output layer with 1
output.

• A2: Feedforward Neural Network for all dimensions of
data (roll, pitch, yaw), 1 input layer, 1 sigmoid hidden
layer with N neurons, and 1 linear output layer with 3
outputs.

• A3: Dynamic Neural Network (Nonlinear Autoregressive
with External input) for all dimensions of data (roll,
pitch, yaw), 1 input layer, 1 sigmoid hidden layer with N
neurons, 2 delays, and 1 linear output layer with with 3
outputs.

A1, A2, and A3 architectures with 5 different configurations
are trained and tested with a collection of 5 datasets of
the random motion of 3 digits. At this stage, we explored
appropriateness of models with different number of inputs
and outputs. All the above architectures are trained with
the Bayesian Regularization back-propagation algorithm. With
70% of the dataset for training, 10% for validation and 20%

TABLE II
COMPARISON OF MSE ERROR OF 3 DIFFERENT ARCHITECTURES (A1, A2,

A3), WITH 5 DIFFERENT CONFIGURATIONS (A, B, C, D, E) FOR MIDDLE
FINGER, INDEX FINGER AND THUMB

Middle Finger
ID Neurons A1 MSE A2 MSE A3 MSE
a 2 13.48% 13.60% 9.82%
b 3 13.61% 13.84% 10.45%
c 4 13.75% 13.50% 11.48%
d 5 13.94% 13.77% 11.72%
e 10 13.48% 13.73% 19.37%

Index Finger
ID N A1 MSE A2 MSE A3 MSE
a 2 4.83% 4.81% 3.45%
b 3 4.83% 4.81% 3.37%
c 4 4.84% 4.81% 3.36%
d 5 4.85% 4.84% 3.96%
e 10 4.88% 4.86% 8.59%

Thumb
ID N A1 MSE A2 MSE A3 MSE
a 2 47.81% 48.15% 20.54%
b 3 46.65% 47.20% 20.97%
c 4 48.81% 52.04% 23.67%
d 5 49.08% 50.38% 39.95%
e 10 48.84% 51.15% 55.84%

for testing. Comparison of the mean square error of the 3
models with the ground truth is shown for the index finger in
Table II.

Table II shows that the last model (A3) has the most optimal
accuracy. We have used the same modelling approach for
estimating the joint angles of the index, middle fingers and
the thumb.

D. Dynamic Neural networks (DNN)

We used DNN to estimate finger and thumb joint angle
values. DNN, unlike static (feed-forward) neural networks, has
a recurrent network structure and memory on the way from
input to output which makes it a great candidate to estimate
patterns in a time series and sequential data [31].

A Dynamic Neural Network with 1 sigmoid hidden layer,
2 delays and 1 linear output layer is used to estimate the
joint angles shown in (Figure 1). First, we estimate the joint
angles by using IMU sensors placed on the two finger and
thumb phalanges (Figure 3, b), followed by an estimation of
the same joint angles using the palm shape. Information from
both DNNs is then fused to reach a higher precision of joint
angle values.

E. Principal Component Analysis (PCA)

The high-dimensional pose features usually require the use
of dimensionality reduction methods to make them computa-
tionally feasible. In this stage, we transform the input features
to other values that are linearly uncorrelated, before applying
them to the network. PCA method is used here to find principal
components that have the largest possible variance and are
orthogonal to each other. We performed mean centering and
normalizing as prerequisites of PCA.

Each sensor produces 4 values (q = [qx, qy, qz, qw]). We
use two sensors to estimate each joint , each of which has 4
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values in experiments 1 and 2 which creates 8 features as input
to the neural network. We include 95% of the information
in the principal components, which can be achieved using
4 components of PCA. These components are used by two
neural networks to estimate the joint angles from the palm
measurements and the digit joint measurements, respectively.
Finally, the output of each of the two networks, which are 3+3
values, are given to a third network to fuse the estimates and
improve the accuracy of the results.

V. RESULTS AND DISCUSSION

Two different approaches have been investigated in order
to improve the accuracy of the joint angle estimation: Nor-
mal sensor fusion, and Neural Network (DNN)-based sensor
fusion.

A. Normal sensor fusion

In this approach, we use different combination of quaternion
values of the palm and the digits as input to the neural network
and calculate the accuracy (see Table III). Experiments details
are:

• Exp1: raw quaternion values of the desired sensors over
the joint as inputs of NN

• Exp2: raw quaternion values of the desired sensors over
the palm as inputs of NN

• Exp3: raw quaternion values of the both inputs in exp1
& exp2 as inputs of NN

• Exp3.A: normal averaging the output values of the both
exp1 & exp2

• Exp3.B: weighted averaging the output values of the both
exp1 & exp2

The percentage error is calculated as:

percentage error =
average error ∗ 100

range
(1)

Table III demonstrates that averaging the estimation ob-
tained in the experiments 1 and 2 can lead to a slightly
better performance (exp3A & exp3B) as compared to using
all the inputs to train a new model (Exp3). This can be partly
caused by over fitting the network in Exp3. Averaging the two
estimations gives better results than the experiments 1 and 2
independently except in the experiment 2 where the middle
finger has 3.18% of average error, while standard and weighted
average has 3.24% and 3.35% of average error, respectively.

B. PCA and NN based sensor fusion

In the second approach, PCA is used to reduce dimensional-
ity of the raw quaternion values before sending them to neural
network. In addition, in exp3 another neural network is used
to combine results of exp 1 & 2. Therefore the experiment
details are:

• Exp1: PCA values of the desired sensors over the joint
as inputs of NN

• Exp2: PCA values of the desired sensors over the palm
as inputs of NN

TABLE III
COMPARISON OF THE PERCENTAGE ERROR OF MODELS OBTAINED WITH
IMU SENSOR (QUATERNIONS) DATA AS INPUT AND EULER ANGLES AS

OUTPUT, IN EXPERIMENTS 1, 2 AND 3.(WITHOUT PCA)

Middle Finger
Angle Exp 1 Exp 2 Exp 3 Exp 3.A Exp 3.B
Yaw 3.30% 2.02% 3.07% 2.64% 2.75%
Pitch 3.71% 4.16% 4.26% 3.34% 3.39%
Roll 4.82% 3.37% 3.80% 3.37% 3.93%

Average 3.94% 3.18% 3.71% 3.24% 3.35%
Index Finger

Angle Exp 1 Exp 2 Exp 3 Exp 3.A Exp 3.B
Yaw 2.87% 2.57% 3.02% 2.53% 2.51%
Pitch 3.61% 3.51% 3.47% 3.34% 3.34%
Roll 2.96% 3.12% 2.97% 2.83% 2.85%

Average 3.14% 3.06% 3.15% 2.90% 2.90%
Thumb

Angle Exp 1 Exp 2 Exp 3 Exp 3.A Exp 3.B
Yaw 3.41% 3.67% 5.76% 2.64% 2.69%
Pitch 4.27% 3.72% 3.19% 3.27% 3.38%
Roll 3.83% 2.74% 4.42% 3.00% 3.16%

Average 3.83% 3.37% 4.45% 2.97% 3.08%
* exp 3.A & 3.B show results of averaging and weighted averaging the

results of exp 1 & 2 to acquire the joint angles.

Fig. 5. General results of each finger with different number of neuron in the
hidden layer

• Exp3: PCA values of the both inputs in exp1 & exp2 as
inputs of NN

Table IV shows results of this method.
Combining the results of the first two experiments in the

third NN shows somewhat improved performance when com-
pared with the results from tracking fingers and thumb poses
only or only palm shape poses (see Table IV). Figure 6 shows
the comparison between the estimation and the ground truth
of the thumb model. The response of the index and middle
fingers have similar characteristics.

Fig. 5 shows variation of the average error for each digit
against number of the neurons in the hidden layer. The error
is calculated as the average of absolute value of the difference
between the target and the estimation.

In general, the response of the index finger model is
very much in line with the target. However, the discrepancy
between the two is more obvious for small movements which
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TABLE IV
COMPARISON OF PERCENTAGE ERROR OF MODELS OBTAINED WITH IMU SENSOR (QUATERNIONS) DATA AS INPUT AND EULER ANGLES AS OUTPUT, IN

EXPERIMENTS 1, 2 AND 3.(WITH PCA)

Middle Index Thumb
Angle Exp 1 Exp 2 Exp 3 Exp 1 Exp 2 Exp 3 Exp 1 Exp 2 Exp 3
Yaw 2.62% 2.57% 2.04% 3.50% 2.96% 2.98% 3.84% 3.94% 2.98%
Pitch 3.29% 2.91% 2.94% 3.85% 3.87% 3.81% 3.03% 3.30% 2.68%
Roll 2.61% 2.41% 2.44% 3.87% 3.72% 3.61% 4.16% 4.98% 1.70%

Average 2.84% 2.63% 2.47% 3.74% 3.52% 3.47% 3.68% 4.07% 2.45%
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Fig. 6. Estimation of Yaw, Pitch and Roll values compared with the target

could be due to the generalization in the learning process.
Furthermore, errors occur during fast changes in the movement
direction. This can be observed in the peaks of the graph
correspondent to the roll angle.

According to the experimental results tested on the vali-
dation data, using PCA to reduce the dimension of the input
features (from palm and digits sensors), and fusing them using
another neural network can lead to higher accuracy in the joint
angle estimation.

VI. CONCLUSION

This paper proposed the possibility of using palm shape
deformation in predicting the hand joint angles.IMU sensors
over the palm and finger joints are used to obtain orientations
of palm sections, as well as finger and thumb links. Super-
vised machine learning algorithms have been used to obtain
the best possible models to interpret the sensors data. The
DNN estimations have been compared with the ground truth
obtained by the optical tracking system Polaris Spectra, and
performance analysis of each model has been conducted.

The evidence from this study suggests that palm deforma-
tions positively contribute to better estimate kinematics of the
hand and can improve gesture estimation accuracy. Thumb
with 5–DOFs, is known to be a difficult structure to estimate,
but since thumb is the principal component in deformation
of the palm, taking this deformation into account simplifies
thumb pose estimation process. These results contribute to the
difficulty of accurate hand pose tracking in various application
domains including human-robot interaction.

Our future work will focus on investigating more sophisti-
cated machine learning methods in order to better estimate, not
only the joint angles, but also the fingertips in a wider range
of hand poses and grasp configurations. Further studies will
also include an extensive testing of hand tracking evaluation
in robotic tele-operation scenarios to test more intuitive and
dexterous tele-manipulation.
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