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Abstract—In this work, a method for 3D reconstruction of
Minimally Invasive Surgery data in real-time is presented. It is
formulated on top of the already established framework of Quasi-
Dense Matching, optimizing its components for speed. First, it
recovers a set of sparse features, which are matched robustly.
Then, 3D information is propagated in a spatial neighbourhood,
until similarity reaches a predefined threshold, to cover a semi-
dense portion of operating field domain. Matching on dense level
is achieved with Zero Mean Normalized Cross Correlation metric
to establish correspondences. The algorithm is able to recover
disparity maps with relatively small error, while maintaining real-
time performance.

Index Terms—3D Reconstruction, Stereo Matching, Disparity
Estimation, MIS, CUDA

I. INTRODUCTION

The problem of reconstructing the 3D geometry from arbi-
trary scenes or videos is a well-studied field where several
algorithms have been developed. However, formulating the
problem in the context of Minimally Invasive Surgery (MIS),
introduces important limitations and constraints. Most of them
originate from the environment of MIS, such as the presence
of smoke, blood, occlusion, challenging lighting conditions
and deformation of tissues caused by surgical instruments or
other factors. Additionally, real-time performance, which is a
prerequisite for the adoption of 3D reconstruction in real MIS,
introduces an important constraint regarding execution time.
As a consequence, for 3D reconstruction to be efficient and
useful, a compromise between accuracy and execution time
must be reached.

Considering the aforementioned constraints, we propose
a massively parallel GPU adaptation of a Quasi Dense 3D
reconstruction propagation algorithm, to enforce real-time
performance. By tailoring the algorithm to take advantage
of modern GPU capabilities and features, significant speed
up is achieved. First, costly correlation computations are
performed in parallel kernels. At the same time data transfers
are overlapped with kernels, while being executed in parallel
GPU streams. Quality of reconstruction is assured with the
use of a propagation queue, which is partially sorted in every
iteration of the algorithm based on the confidence of matches,
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in each seed’s neighbourhood. This queue is explicitly stored
in pinned memory, to ensure fast data transfer between the
CPU and GPU.

II. RELATED WORK

Given the availability of a stereo endoscopes and the pop-
ularity of binocular stereo methods in various applications,
3D reconstruction problem in MIS is mainly investigated with
methods belonging in the stereoscopic category. Stereoscopic
methods try to estimate the 3D structure from a pair of images,
which are produced from two camera sensors attached in a
single setup. The most critical component in the pipeline of
Stereoscopy is establishing stereo correspondences between
the images. Once those correspondences have been estab-
lished, the depth of the 3D points can be estimated [1],
[2]. Such correspondences are found by matching pixels or
higher level features between the two images so that those
matches describe the same points or features in 3D space.
Most feature detection and tracking methods take advantage
of texture variations of the target surfaces in order to detect
their location. If the variation is high enough, features can be
detected and matched robustly.

Several approaches have been reported to apply stereoscopic
methods to MIS data in the literature. Stoyanov [3] proposed
to first establish a sparse set of correspondences of salient
features and then propagate the disparity information of those
salient features to nearby pixels, assuming small disparity
changes between neighboring pixels. Based on this, Bernhardt
[4] suggested a similar method, including three stereo match-
ing criteria, in order to remove outliers. Penza [5] suggested
two methods, based on block matching algorithm and a non-
parametric modified census transform, respectively. Holes are
filled and disparity is refined using a simple linear iterative
clustering (SLIC). Computing descriptors and correspondences
in images is often time consuming. Thus, several implemen-
tations have been introduced, which rely on executing heavy
computational loads on the GPU. More specifically, Roel [6]
proposed a hybrid recursive matching approach, performing a
non-parametric transformation on the images. Outside of MIS
context, Hernandez-Juarez [7] proposed a Semi-Global Match-
ing approach, fully adapting the algorithm to the GPU, taking
advantage of special features of modern GPUs, achieving 3D
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reconstruction with very fast real-time performance. Geiger [8]
in Efficient Large Scale Stereo Matching (ELAS), suggested
the use of a probabilistic Generative Model approach for stereo
matching, along with a maximum-a-posteriori estimation for
disparity estimation. To increase speed and robustness, the
disparity search space is reduced, by building a prior over
the disparity space by forming a triangulation on a set of
robustly matched correspondences, named support points. As
a result, accurate disparity maps of high resolution images can
be computed at high frame rates.

In order to increase the accuracy of 3D reconstruction,
machine learning methods have also been explored. Con-
volutional Neural Netowrk frameworks for feature matching
and disparity estimation have been discussed in the literature
[9], demonstrating promising results. However, the lack of
availability of MIS data for training such networks poses a
serious challenge for the adoption of such methods, which is
often addressed with unsupervised learning approaches [10].

III. QUASI-DENSE 3D RECONSTRUCTION

Quasi Dense Stereo Matching method is built for the
reconstruction of 3D information from stereo-laparoscopic
images during robotic assisted surgery [3]. It is a novel
stereo semi-dense reconstruction algorithm that propagates
disparity around a set of candidate feature matches. In this
way, problems with specular highlights and occlusions from
instruments can be eliminated. Furthermore, the algorithm
can be used with any feature matching strategy allowing the
propagation of depth in very disparate views. Disparity is
estimated in two phases, namely Sparse Matching and Dense
Matching, presented below.

A. Sparse Matching
Sparse matching consists of a sparse 3D reconstruction base

on feature matching across the stereo pair. The initial step
of this method is to recover a sparse set of robust matches
across the stereo-laparoscopic image pair using a feature based
technique. This step includes two more sub processes. Firstly,
it detects strong feature points in the left image. Detection can
be achieved with several feature detection methods, namely
ORB [11], SURF /citeb12 and G-SURF /citeb13. After ex-
perimentation, it is concluded that the most efficient approach
is Good Features to track proposed by Shi-Tomasi [12]. It
recovers corners or features in an image based on image
intensity gradient. Secondly, in order to find the corresponding
points in the right image, optical flow is estimated using
Lucas-Kanade method [14]. This method assumes that the
flow is essentially constant in a local neighbourhood of the
pixel under consideration and solves the basic optical flow
equations for all the pixels in that neighbourhood, by the
least squares criterion. By combining information from several
nearby pixels, the Lucas-Kanade method can often resolve the
inherent ambiguity of the optical flow equation.

B. Dense Matching
As a sparse set of 3D points has been established in the sur-

gical field of view, it is possible to propagate 3D information

to cover a semi-dense portion of operating field domain. It
should be mentioned that all features correspondences which
were calculated in the previous step, are used as seed matches.
They are sorted, in descending order, based on the correlation
score between their respective templates, and stored using a
priority queue structure. After that, the algorithm proceeds to
propagate structure around the matches correlation scores on
a best-first basis popping the priority queue. As the algorithm
iterates, new matches are added to the queue. When there are
no matches to be popped, the algorithm terminates. If a seed
match consists of a sparse pixel p0(x, y) in the left image
and the corresponding pixel p1(x

′, y′) in the right image,
then a spatial neighbourhood N(p0, p1) is defined and can be
used to enforce a 2D disparity gradient limit as a smoothness
constraint. Thus, for each seed pixel, the spatial neighborhoods
around them are defined by

N(p0) = {(x− nx, y − ny) : nx, ny ∈ [−N,N ]} (1)

N(p1) = {(x′ − nx − dx, y
′ − ny − dy)

: dx, dy ∈ [−Dg, Dg]} (2)

where (x− nx, y − ny) denotes the coordinates of each pixel
within a spatial window of (2N + 1) × (2N + 1) pixels
centered at seed pixel p0 and can be matched with a candidate
pixel (x′ − nx − dx, y

′ − ny − dy), which is placed within a
spatial window of (2Dg + 1) × (2Dg + 1) pixels centered
at (x′ − nx, y

′ − ny) in the right image. In conclusion, if
(U0, U1) denotes a candidate pair of pixels, then the full match
propagation neighbourhood is,

N(p0, p1) = {(U0, U1) : U0 ∈ N(p0), U1 ∈ N(p1)} (3)

The algorithm uses a dissimilarity measure during prop-
agation in order to determine which pixels to be matched
together. A very common and efficient measure is the zero
mean normalized cross correlation (ZNCC), which is less
prone to illumination bias in homogeneous regions while it
is also more indicative in regions with discriminative texture.
The range of the computed value is [0, 1]. Thus, the higher
the ZNCC gets, the more are those two pixels correlated. The
propagation stops when no more matches can be achieved,
because the correlation scores are lower than a predefined
threshold.

C. Optimization for Real-time Performance

This subsection explicitly refers to the modifications that
have been introduced to the original method in order to speed
it up enabling real-time performance without compromising
the quality of the reconstruction. This results in a modified
custom disparity estimation framework, as presented in Fig. 1.

First of all, it is assumed that only rectified images are used.
This means that the algorithm focuses on looking for possible
matches on the horizontal dimension only, which demands
fewer calculations and less memory. In this case, the equation
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Fig. 1. Figure demonstrating the complete CPU-GPU method pipeline and data flow.

that calculates the spatial neighborhood around a seed pixel in
the right image is given by

N(p1) = {(x′ − nx − dx, y
′ − ny) : dx ∈ [−Dg, Dg]} (4)

which means that every pixel in the left image, included in
N(p0), can be matched with (2Dg + 1) candidate pixels in
the right image.

It is also possible to exploit modern GPU technology
to concurrently calculate multiple correlation windows and
propagate structure over multiple pixels. Specifically, a CUDA
kernel calculates all correlation scores inside a full match
propagation neighbourhood defined by eq.3, by launching a
block of threads for each seed match. In this way, a large
number of concurrent threads that run on modern graphic cards
are activated. According to the serial implementation of the
method, correlation scores that are being calculated during an
iteration of the algorithm refer to just one seed match. Then,
the algorithm validates these scores, checks whether any of
the pixels related to the potential matches have already been
matched and if not, stores them in a priority queue. In order
to proceed to the next iteration, the algorithm retrieves the
best matching pair from the priority queue and treats it as a
seed match. Subsequently, a respective full match propagation
neighborhood around the seed match is calculated and the
algorithm tries to find new matches within it. In this way,
structure is always propagated around the best seeds. On the
other hand, the proposed parallelized implementation of the
method calculates the matching scores for the total number
of the seeds which are available and have been stored in a
simple array. The use of simple array instead of a priority
queue is preferable considering the additional overhead that
priority queues create because of the sorting procedure which
runs in the background. However, bitonic sort [16] is applied
inside the kernel so it is possible for the algorithm to choose
the highest matching score for each pixel within a seed’s
neighborhood. The following paragraphs of this subsection
describe the features of a modern GPU and how these are
used by the proposed approach in order to achieve real-time
performance.

Shared memory. Shared memory is much faster than
local or global memory, because of the fact that it is on-
chip. In fact, shared memory latency is roughly 100x lower
than uncached global memory latency. In addition, shared
memory is allocated per thread block, so all threads in a
block have access to the same shared memory. This means
that threads can access data in shared memory loaded from
global memory by other threads within the same thread block.
Concerning the parallelised implementation of the method,
the coordinates of seed pixels are initially stored in global
memory. Each block of threads calculates the coordinates
as well as the correlation scores for every candidate pixel
within the propagation neighbourhood around seed pixels and
finally sorts them in respect of correlation scores. Using shared
memory to store the results of these calculations significantly
accelerates the whole procedure by reducing the total number
of access calls in global and local memory.

Pinned memory. Host (CPU) data allocations are pageable
by default and GPU cannot access data directly from pageable
host memory. So, when a data transfer from pageable host
memory to device memory is invoked, the CUDA driver must
first allocate a temporary pinned host array, copy the host
data to the pinned array and then transfer the data from the
pinned array to device memory. Cost of the transfer between
pageable and pinned host arrays can be avoided by directly
allocating host arrays in pinned memory. Doing so, the data
transfer rate can be increased although it depends on the type
of host system (motherboard, CPU, chipset). Moreover, over-
allocating pinned memory can reduce overall system perfor-
mance because it reduces the amount of physical memory
available to the operating system and other programs. Because
of the fact that during the propagation of the structure around
the matches the CUDA kernel can be called many times, data
transfers must not dominate the overall execution time. Also, at
the end of each kernel execution, coordinates of new potential
matches have to be transferred from device to host memory
in order to be validated. By allocating the appropriate arrays
directly in pinned memory, removes intermediate transfers and
decreases the overall execution time correspondingly.

Overlapping kernel execution and data transfers. A
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stream in CUDA is a sequence of operations that execute
on the device in the order in which they are issued by the
host code. While operations within a stream are guaranteed to
execute in the prescribed order, operations in different streams
can be interleaved and, when possible, they can even run
concurrently. In addition, not only modern GPUs give the
ability to execute kernel asynchronously but also transfer data.
Since all operations are non-blocking with respect to the host
code, multiple streams can be launched simultaneously sepa-
rating the total number of calculations into equal pieces. When
only one stream is used, data transfers and kernel execution
are served sequentially. On the other hand, in asynchronous
version when stream 1 executes the kernel, stream 2 transfers
data from host to device memory (H2D). Moreover, when
stream 1 transfers data back to host (D2H), stream 2 and 3
execute the kernel (ZNCC Kernel), while stream 4 transfers
data to device (H2D), as illustrated in Fig. 1. Thus, this
pattern is followed repeatedly and results in overlapping kernel
execution and data transfers reducing the overall execution
time. This technique is applied to the parallelized version of
the method by dividing the initial number of seed matches
by the number of streams and distributing the appropriate
amount of data to them. As a result, further performance
optimization has been achieved, especially when the number
of seed matches is relatively high.

IV. EVALUATION

In order to assess the quality, accuracy and performance
of the 3D reconstruction methods, an evaluation framework
is included. We tested the performance on an Intel Xeon E5-
1650 with 12 cores, with 64 GB RAM and an NVIDIA Titan
X graphic card. However, the same results in performance
are obtained on an Intel i5-6600 with 8GB RAM and a
NVIDIA GTX 1060 GPU. Each method is evaluated over a
set of datasets, with specific attributes and challenges. The
first dataset is a breathing simulation sequence of a deforming
silicon heart. It has an initial resolution of 360 x 288 pixels,
effectively reduced to 301 x 227 after rectification. The second
dataset is a set of kindney, liver and spleen phantoms captured
from various poses and under varying lighting conditions
(EndoAbs) [17]. This is a challenging dataset for 3D re-
construction and it has a resolution of 640 x 480 pixels
(388 x 272 pixels after rectification). Both those datasets are
accompanied with ground truth laser scans, providing ground
truth information. The last dataset, is a video sequence of a
porcine uterine horn exploration. It has a resolution of 640 x
480 pixels, reduced to 480 x 396 pixels after rectification. This
dataset depicts an in-vivo sequence, therefore no ground truth
is available. This variety in datasets provides us with useful
insight on the strengths and weaknesses of our method for
each specific case. The results from our evaluation framework
are reported in two sections.

First, Quantitative results are obtained from datasets which
include ground truth laser scans. Mean Error (ME) and stan-
dard deviation in both the disparity maps and 3D point clouds
are calculated, between them and the ones estimated from the

applied methods. ME is calculated as the average absolute
difference in pixels (disparities) and millimetres of euclidean
distance (depth) between the estimated and the actual disparity
or depth of each pixel. It is a simple evaluation metric, yet able
to provide a general performance indicator. Additionally, the
percentage of reconstructed points from all the points con-
taining ground truth information is also included. Qualitative
section, includes the disparity maps and 3D pointcloud images
estimated, for datasets without ground truth, accompanied with
results regarding the execution time for the reconstruction of
each method. Given the availability of code, along with our
method, performance was evaluated over two other methods.
The first is the original Quasi Dense CPU method by Stoyanov
[3] and the second is ELAS [8], which also performs the
calculations on the CPU. Additional methods and metrics will
be included, but their results will be cited from the respective
literature.

Figures in this section contain images from a single in-
dicative frame of the dataset and will be presented in the
same format, whereas each row contains results, organized in
columns, regarding a single method. The first column shows
the disparity map estimated by the method, while the second
column includes the depth maps. The third column shows im-
ages of the Mean Error (ME) between the estimated disparity
map and the ground truth disparity map, supplemented with
the dataset. In Qualitative evaluation case where ground truth
is not provided, this column is excluded (Fig. 4). Finally, the
last column contains a snapshot of the reconstructed 3D point
cloud, calculated from the estimated disparity map.

A. Quantitative

As mentioned above, Quantitative evaluation is performed
in datasets, which include ground truth. Therefore, the afore-
mentioned quantitative metrics are calculated, indicating the
accuracy of our 3D reconstruction result. To get a visual
representation of the reconstruction error, evaluation maps are
constructed, encoding the ME between the estimated and the
ground truth disparity maps in color. Deep blue color indicates
minimal error, while red color represents points whose ground
truth is not available.

In both datasets, the best performing method, in terms
of error metrics is Quasi Dense CPU. However, the pro-
posed GPU implementation achieves similar performance.
More specifically, in the Deforming Silicon Heart Dataset,
as presented in Table I both disparity/depth ME values are
very close, 1.34/3.70 and 1.42/4.03 for CPU version and our
GPU implementation respectively. It is clear that both Quasi
Dense methods, outperform ELAS, due to the outliers which
are reconstructed by ELAS, compromising its performance,
even if its disparity maps show consistent error. Similar results
are observed in the EndoAbs dataset evaluation (Table II),
where Quasi Dense GPU demonstrates error values close to
its CPU counterpart. A set of outliers reconstructed from the
GPU method, caused by the partial sorting of the propagation
queue, can lead to large deviations in depth (l2,l3 cases), but
the visual result remains intact. However, in terms of speed it

Authorized licensed use limited to: National Library of Greece. Downloaded on September 30,2020 at 16:29:01 UTC from IEEE Xplore.  Restrictions apply. 



is clear that Quasi Dense GPU greatly outperforms the other
methods in all datasets. Execution times range from 1.85 to
3.5 times faster than ELAS and 13 to 18 times faster than
Quasi Dense CPU.

The 3D reconstruction method suggested by Penza [5], [18]
also reports results from those two datasets. However, for
evaluation of the reconstruction results, accuracy is used as
the evaluation metric. They define accuracy as the median
of the depth error between the estimated and the ground
truth point clouds. To be able to perform comparison under
a common base, accuracy is also calculated for our method.
In the heart dataset, quoted as heart2 in [5], is reported that
accuracy ranges from 1.70 to 3.34, while the percentage of
reconstructed points is between 44.7% and 66.5% of the
points. It also reports execution time of 1.2 seconds per
frame. On the other hand, our method reconstructs 75.5% of
points, achieving accuracy of 2.30, while calculating disparity
in 44.42 msec, which is 27 times faster. Similar results are
extracted from the EndoAbs dataset. More specifically, for
EndoAbs distmax dataset, accuracy of 2.40, 1.80, 1.55 is
reported in [18], for l1, l2, l3 lighting conditions respectively.
In comparison, our method achieves 2.74, 2.54, 2.43 in
accuracy. However, since execution times are not reported,
given the resolution of the dataset, we estimate a similar speed
up from our proposed implementation.

The GPU implementation of Semi-Global Matching [7] has
also been evaluated over the datasets. It achieves very fast
execution times, more than 10 times faster than our proposed
method. Nevertheless, it is not included in the quantitative
evaluation, since it shows error values one order of magnitude
larger than the results reported here.

Fig. 2. Figure demonstrating 3D reconstruction results, disparity, depth, mean
error and 3D point cloud (from left to right column) for Deforming Silicon
Heart Dataset for compared methods, ELAS, Quasi Dense CPU and Quasi
Dense GPU (from top to bottom).

B. Qualitative

Datasets accompanied with ground truth are produced by
phantoms and their corresponding laser scans. However, that

TABLE I
PERFORMANCE SUMMARY FOR DEFORMING SILICON HEART DATASET

Method ME Std Deviation Points Execution
Disp Depth Disp Depth % Time

ELAS 2.25 44.3 2.20 99.80 78.82 82.05 ms
QDS CPU 1.34 3.70 1.21 4.023 75.59 776.03 ms
QDS GPU 1.42 4.03 1.68 6.31 75.51 44.42 ms

Fig. 3. Figure demonstrating 3D reconstruction results, disparity, depth, mean
error and 3D point cloud (from left to right column) for EndoAbs distmax

Dataset for compared methods, ELAS, Quasi Dense CPU and Quasi Dense
GPU (from top to bottom).

is not the case in real MIS surgery, where in-vivo surgical
scenes must be reconstructed in 3D. Thus, the inclusion of an
in-vivo dataset from a real operation is important. Such dataset
introduces important 3D reconstruction challenges, namely tis-
sue deformation, reflections, blood, smoke and occlusion from
surgical instruments. These challenges need to be addressed
by the reconstruction algorithms, towards their adaptation in
real MIS procedures. However, since ground truth data are
not available, no quantitative error metric can be applied,
which results in evaluation of the dataset only from its visual
appearance and execution time.

Although Porcine Uterine Horn Dataset introduces few of
the aforementioned 3D reconstruction challenges described
above, namely reflections and deformation from respiration,

TABLE II
PERFORMANCE SUMMARY FOR ENDOABS DATASET distmax

Method ME Std Deviation Points Execution
Disp Depth Disp Depth % Time

l1 - very low lighting
ELAS 2.13 59.55 2.67 148.1 71.30 102 ms

QDS CPU 1.09 3.02 1.14 3.02 52.56 419 ms
QDS GPU 1.42 4.31 1.68 6.42 48.51 30.44 ms

l2 - low lighting
ELAS 1.74 69.44 2.13 161.1 82.98 121 ms

QDS CPU 0.99 2.86 0.99 4.23 68.74 866 ms
QDS GPU 1.84 6.36 2.56 13.10 67.86 48.11 ms

l3 - normal lighting
ELAS 1.51 65.34 1.76 153.9 85.46 129 ms

QDS CPU 0.9 2.65 0.91 2.73 80.49 947 ms
QDS GPU 1.38 4.72 2.14 10.24 78.86 52.78 ms
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Fig. 4. Figure demonstrating 3D reconstruction results, disparity, depth and
3D point cloud (from left to right column) for Porcing Uterine Horn Dataset
for compared methods, ELAS, Quasi Dense CPU and Quasi Dense GPU (from
top to bottom).

TABLE III
PERFORMANCE SUMMARY FOR PORCINE UTERINE HORN DATASET.

Method Execution
Time

ELAS 592 ms
QDS CPU 2465 ms
QDS GPU 82 ms

it has stronger texture variations. Thus, features that are more
robust can be extracted and more confident matching cost can
be computed. Hence, both Quasi Dense methods, which are
based on such matching costs, perform best without visible
differences. However, Quasi Dense CPU requires almost 2.4
seconds to reconstruct a frame, while Quasi Dense GPU can
process frames at 82 msec. ELAS recovers the geometry quite
accurately and fast (0.6 seconds), but produces erroneous 3D
regions especially in points closer to the image borders. It
is obvious that Quasi Dense GPU outperforms the other two
methods, since it reconstructs the point cloud with the best
quality, along with its CPU counterpart, while processing
frames 30 times faster than Quasi Dense CPU and 7.2 times
faster than ELAS.

V. CONCLUSION

In summary, this paper argued that Quasi Dense GPU
method is able to reach real-time performance based on CUDA
programming model and at the same time to implement a
quality 3D reconstruction with similar errors compared to
state-of-the-art methods. Thus, the proposed method is suitable
for application in real MIS scenarios, where not only quality
of the reconstruction, but real-time performance is a main
contributory factor.
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