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Abstract— Robotic minimally invasive surgery provides im-
ages from the intraoperative field including organs and sensitive
anatomic structures whose protection from non-voluntary de-
struction is imperative. To assist the surgeon, control methods
that discourage motions towards these sensitive areas are
advocated in the related literature. In this work, an active
constraint controller is proposed and is proved to guarantee
that sensitive/forbidden areas defined by a point cloud are never
violated by the tool tip while the closed loop system remains
passive and its state bounded under the exertion of a human
guiding force. Experimental results are given utilizing a KUKA
LWR4+ kinesthetically guided in a virtual surgical environment.

I. INTRODUCTION

Robotic Minimally Invasive Surgery (RMIS) is a type of
Minimally Invasive Surgery (MIS) which utilizes a master-
slave manipulator system [1], [2]. MIS procedures are per-
formed with elongated instruments through tiny incisions
in the skin of the patient [3] thus minimum incurring
intraoperative damage to the patients body. The advantages
are many including the decreased cost of post-operative
complications [4]. However, as surgeons in MIS manually
operate the tools with their hands they may undergo fatigue
in lengthy operations which deteriorate their performance. In
an effort to overcome the problems of MIS while retaining
its advantages, RMIS has been used [1]. RMIS is able to
provide 3D vision, motion scaling, visual immersion and
tremor filtration. Images from the intraoperative space are
provided by an endoscopic camera as point-clouds in their
raw-form. These images include organs and sensitive areas
such as vessels and delicate tissues. To avoid involuntary
destruction of these sensitive anatomic structures owing to
the surgeon’s strain, the implementation of control methods
that discourage motions towards these sensitive areas has
been proposed [5], [6]. Control methods that enforce Active
Constraints (AC) or Virtual Fixtures (VF) are promising
solutions among them.
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AC have been introduced in robotic autonomous opera-
tions to avoid obstacles while reaching a prespecified goal
[7]. They have also been used as means to virtually restrict
the robot operation in a confined workspace. Moreover,
AC were utilized in physical human-robot interaction either
as safety guarding or assistive tools; for example in [8]
kinesthetic guidance along known paths was assisted by AC.
In a telepresence system, AC were firstly used by Rosenberg
[9]. However, in all the above works AC were defined
via mathematical expressions of the constraint surface. In
many cases, such an expression was possible since prototype
geometric structures were assumed to contain areas or objects
to be avoided. In surgical applications such an analytic
expression may not be available or desired. Surgeons may
need to operate close to forbidden areas thus circumscribed
geometric structures are not effective means to this end. On
the other hand, deriving analytic expressions of real organs
and vessels is not an easy task particularly if a real time
performance is sought. Thus in RMIS, AC have been defined
using point clouds of the sensitive area but the enforcement
of these constraints by the control action is not theoretically
justified [10], [11].

This work intends to fill this gap by presenting a theoreti-
cally sound AC controller for surgical applications. It extends
our previous work [8], which involved an analysis of the
stability and non-constraint violation of previously proposed
AC controllers for a physically guided robot given analytic
expressions of the forbidden areas; simulation results with a
2-dof robot with a rotational and a prismatic joint were only
given to validate the analysis. Such an analysis however,
cannot be directly extended when the forbidden area is
given as a point cloud. Our proposed controller utilizes the
generally accepted practice of considering only the activated
points which are continuously updated as the surgeon moves
its tool, to include the region that is closest to the current tool
position for reducing computational load. Nevertheless, the
minimum distance utilized in [8] cannot be calculated owing
to the lack of an analytic expression; hence the controller
and the results of [8] are not directly applicable. The active
constraint control law proposed in this work is proved to
guarantee, for the first time to our knowledge, that constraints
defined by point-clouds are never violated by the instrument
tip and that the closed loop system is passive and its state is
bounded and is validated by experiment.

The structure of the paper is as follows. Section II
concerns the problem formulation while Section III details
the proposed controller for active constraint enforcement.



Section IV presents the stability analysis of a kinestheti-
cally guided robot under the proposed AC controller. Its
performance is demonstrated and validated by experiments
detailed in Section V in a use case involving a kidney and
its adjacent vessels. Conclusions are drawn in Section VI.
In the Appendix important theorems utilized in the stability
analysis are reported.

II. PROBLEM FORMULATION

Consider the dynamic model of a 3-dof non-redundant
manipulator in the 3-dimensional operational space with
gravity compensation and additive dissipative force under
the kinesthetic guidance of a human force Fh ∈ R3 and
the action of a control input uc ∈ R3 that is designed to
enforce active constraints:

Λp(p)p̈ + (Cp(p, ṗ) + Dd) ṗ− uc = Fh, (1)

where
Λp(p) = [J(q)Λ−1(q)JT (q)]−1, (2)

Cp(p, ṗ)ṗ = J−T (q)C(q, q̇)q̇−Λp(p)J̇(q)q̇ (3)

with p(t), ṗ(t) ∈ R3 being the tool tip position and velocity
of the robot, q, q̇ ∈ R3 robot joint position and velocity,
J(q) ∈ R3×3 the robot Jacobian, Λ(q) ∈ R3×3 the
manipulator’s inertia matrix, C(q, q̇) ∈ R3×3 the Coriolis
and centripetal matrix, Dd ∈ R3×3 is a positive definite
matrix of the desired damping. Notice that Λp is positive
definite and the matrix Λ̇p − 2Cp is skew symmetric.

It is assumed that the reconstructed surgical environment
is provided as a 3-D point cloud from the endoscopic camera.
It is also assumed that the operator (the surgeon) may select
a subset of the points belonging to the sensitive region via
an appropriately designed Graphical user interface (GUI) or
by other means, as well as a subset of the points belonging
to the region in which the surgeon intents to act. The former
subset approximates the organ surfaces or delicate tissues
that should not be violated by the robot’s end-effector while
the latter approximates the surface of the region within which
the surgeon would like to move the robot tool tip freely. Let
Os be the finite subset of points of the restricted region and
As the finite subset of points of the allowed region, which
are disjoint sets. For simplicity and without loss of generality,
consider all positions p(t), Os and As be expressed in the
same coordinate system.

The main objective of this work is to control the robot
so that it actively resists the human operator by exerting
a repulsive force when he guides the end-effector near the
restricted region not allowing to ever enter it.

The approximation of the constrained region’s surface by
a finite set of points Os, results in an empty space between
them. To achieve our main objective we initially create
spheres, centered at each point of the constrained region’s
surface with radius dc such that all empty space is covered
by the overlapping spheres. In particular, if ρ ∈ R+ is the
density of Os in points per cm3 by selecting dc =

√
3

2 3
√
ρ

we can guarantee that these empty spaces are covered (Fig.
1). Notice that the radius dc depends on the density of Os,

Fig. 1. Visualization of the spheres created around each point of the
constrained region’s surface.

which is considered known and homogeneous. In this way
the constrained surface can be defined as the boundary of
the overlapping spheres ∂Oc where the set Oc is defined as
follows:

Oc =
⋃

pi∈Os

{p ∈ R3 : ‖p− pi‖ ≤ dc}. (4)

Consequently, the constraint-free space Ω is

Ω = R3 −Oc. (5)

Besides the main control objective defined previously, the
robot should maintain a passivity property and state bound-
edness irrespective of whether its tip is away or near the
constrained space.

III. THE PROPOSED AC CONTROLLER

Let us now consider the nearest to the end-effector spheres
defined as the spheres with its surfaces within a predefined
distance d0 ∈ R+ from the end-effector. In particular,
consider the set of the neighboring to the tool tip, sphere
centers C, which is defined as follows:

C = {pi ∈ Os : ‖p− pi‖ ≤ (d0 + dc)} (6)

Only these spheres will only be activated with respect to the
active constraints instead of the whole set thus reducing the
computational load of the method. In practice, to calculate
the set C, we use the commonly available k-d tree search
[12], [13], i.e. we create a k-d tree from the points of Os,
and we search for all the points close to tool point.

For each sphere with a centre in C, we propose the
following artificial potential shown in Fig. 2:

Vi =
1

2
ln

(
1

1− ψi

)2

(7)

where

ψi =
(‖p− pi‖ − (d0 + dc))

2

d20
(8)
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Fig. 2. The AP function used in this work.

Notice that the minimum Euclidean distance between the
robot’s position and the restricted region utilized in [8]
cannot be used in this case since an analytic expression
for the forbidden region is not available. Further notice that
Vi < ∞ if and only if ψi < 1. Hence, owing to (6) ψi < 1
if and only if ‖p− pi‖ > dc (Fig. 2).

Remark 1: Notice that parameter d0 is related to the total
area of the influence of the potential field. Hence the value
d0 should be set such that no repulsive forces are exerted
within the allowed region As. In particular, d0 is selected as
d0 = dm−dc with dm being the minimum distance between
the sets Os and As: dm = min{||pi − pa|| : pi ∈ Os,pa ∈
As}.

The constrained surface defined by the spheres in C is
enforced by the sum of repulsive forces fi ∈ R3 produced
by the gradient of the Artificial Potential field Vi:

fi = −∂Vi
∂p

. (9)

which for the proposed potential field is given by:

fi =
2

d20(1− ψi)
ln

(
1

1− ψi

)
ei, ∀pi ∈ C (10)

where ei ∈ R3 is given by:

ei = ((d0 + dc)− ‖p− pi‖)
p− pi
‖p− pi‖

(11)

expressing the minimum distance between the robot tool
point and the sphere surface along the direction of the line
connecting the sphere’s center to the tool point.

The proposed AP function (7) has the following properties:
• Vi(p) = V (‖p−pi‖) is a positive continuously differ-

entiable scalar function, for all ‖p−pi‖ ∈ (dc, d0+dc];
• Vi(p)→∞ if only if ‖p− pi‖ → dc;

•
∂Vi(p)
∂p is zero if and only if ‖p− pi‖ = dc + d0.

Any AP that satisfies the above properties can be used instead
of the proposed AP.

Finally, the total repulsive force on the end-effector, which
is utilized as a control signal, is the sum of the forces fi
produced by each artificial potential field of the neighboring
spheres, i.e.:

uc = k
∑
pi∈C

fi (12)

where k > 0 is a scalar gain.
Remark 2: Notice that the definition of C in (6) implies

that the term (‖p−pi‖− (d0 + dc)) will never be negative,

since only surface points that belong to C are taken into
account. Furthermore, any new pi entering C will contribute
continuously in uc, as the corresponding repulsive force fi
is initially zero.
The above methodology can be described in pseudocode
form as shown below:

while controller runs do
p← End-effector position
Os ← Constraint’s point cloud
Create kd-tree from Os
C ← Search points in k-d tree with distance from p

below d0 + dc
uc ← 0
for pi ∈ C do

Calculate fi from Eq. (9)
uc ← uc +kfi

end for
end while
Remark 3: Notice that the approximation of the constraint

surface with spheres can produce ripples in the repulsive
force signal if a motion parallel to the surface and within
the area of influence of the AC is performed. Such a motion
however is not expected since the surgeon has already spec-
ified his working space (the allowed region) within which
repulsive forces are not exerted by design. Therefore the
proposed method does not hinder the proper execution of
the task.

IV. STABILITY ANALYSIS

As long as the active constraint controller is enabled i.e.,

p ∈ Ωc =
⋃

pi∈Os

{p ∈ Ω : ‖p− pi‖ ≤ dc + d0} (13)

we investigate the system’s passivity with respect to its
output ṗ and state boundedness under the presence of an
external input force Fh, which is assumed to be of finite
energy. The latter is a reasonable assumption as this force is
exerted by a human. To proceed with the stability analysis,
we initially write system (1) in state-space. To this purpose
we define ξ =

∑
pi∈C Vi(p) as an internal system state.

Then, utilizing the state vector:

s = [ṗ p ξ]T ∈ R7 (14)

we can define the initial value problem:

ṡ = g(s,Fh(t)), s0 = s(t0) ∈ D (15)

where D , R3 × Ωc × R

g(s,Fh) =

Λ−1p (−(Cp + Dd)ṗ + Fh(t) + uc)
ṗ

(
∑

pi∈C
∂Vi

∂p )T ṗ

 .
Theorem 1: (i) As long as p ∈ Ωc the following

statements are valid:
a) Under the exertion of the external input Fh, (15)

is strictly output passive with respect to ṗ.
b) There exists a compact subset D1 of D such that

s ∈ D1.



(ii) Whenever p ∈ Ω ∧ p /∈ Ωc the robotic system (1) is
0-GAS and strictly output passive with respect to ṗ.

Proof: (i) Let p(t) ∈ Ωc, for all t ∈ [t0, T ). By
definition g(s,Fh(t)) is continuous in t and locally Lipschitz
with respect to s. Owing to Theorem 3.1, [14], there exists
a time instance some τ < T such that (15) has a unique
solution in a maximal time interval [t0, τ) with τ ∈ (t0, T ]
i.e., s(t) ∈ D, for all t ∈ [t0, τ).
We assume the following candidate Lyapunov-like function:

V =
1

2
ṗTΛpṗ + k

∑
pi∈C

Vi(p) ≥ 0. (16)

Taking the time derivative for all t ∈ [t0, τ) of (16) yields

V̇ =
1

2
ṗT Λ̇pṗ + ṗTΛpp̈ + k

∑
pi∈C

∂Vi(p)

∂p
ṗ. (17)

Substituting Λpp̈ from (1) in (17), and utilizing the skew-
symmetry of matrix

(
Λ̇p − 2Cp

)
, yields:

V̇ =− ṗTDdṗ + FTh ṗ

≤− λmin(Dd)ṗ
T ṗ + FTh ṗ, ∀t ∈ [t0, τ)

(18)

where λmin(.) is the minimum eigenvalue of a matrix.
Hence, system (15) is strictly output passive for all t ∈
[t0, τ), with respect to ṗ (see Definition 2 including in the
Appendix).
Rewriting (18) by completing the squares, yields:

V̇ =− ||
√

Ddṗ−
1

2

√
Dd

−1
Fh)||2 +

1

4
FThD−1d Fh

≤1

4
FThD−1d Fh,∀t ∈ [t0, τ).

(19)

Notice that Fh represents the force applied by the human
to guide the robot. Thus, Fh is bounded and therefore
FThD−1d Fh is also a bounded function of time. Additionally
the human forces have bounded energy so by integrating
equation (19) we get:

V ≤ V (t0) +

∫ t

t0

1

4
FThDd

−1Fh <∞,∀t ∈ [t0, τ) (20)

Thus, states ξ and ṗ are bounded under the exertion of human
force for all t ∈ [t0, τ). Stated otherwise there exist compact
sets Ωξ, Ωv such that ξ ∈ Ωξ ⊂ R and ṗ ∈ Ωv ⊂ R3

for all t ∈ [t0, τ). As a consequence, there exists a positive
constance εi such that Vi ≤ εi, for all t ∈ [t0, τ), which for
the logarithmic function defined in (7) and owing to (6) it
yields:

0 ≤ 1− 1

e
√
2εi

< 1, ∀t ∈ [t0, τ) and i = 1, ...,M ,

Hence (8) yields that ‖p− pi‖ ≥ dr > dc , i ∈ {1, ..,M}
for all t ∈ [t0, τ). However, p ∈ Ωc for all t ∈ [t0, τ).
Therefore ‖p − pi‖ ≤ dc + d0 for all t ∈ [t0, τ). Thus,
p evolves in a compact subset Ω1 of Ωc and consequently
s(t) ∈ D1 , Ωv × Ω1 × Ωξ, a compact subset of D for all
t ∈ [t0, τ). Using Theorem 3.3 of [14] we can conclude
that τ can be extended to T , thus proving the i-part of the
theorem.

We have proved that as long as p ∈ Ωc the constraints are
not violated and the robot’s states are bounded. In addition
the robot possess a passivity property.

(ii) Whenever p ∈ Ω ∧ p /∈ Ωc, then uc = 0 and (1)
becomes

Λp(p)p̈ + (Cp(p, ṗ) + Dd) ṗ = Fh. (21)

It is not difficult to verify using the Lyapunov-like function

W =
1

2
ṗTΛpṗ that ṗ converges exponentially to zero when

Fh = 0. Consequently, employing Lemma 1 of Appendix,
we conclude that p also converges to a constant, proving that
(21) is 0-GAS (see Definition 3 of the Appendix). Moreover,
for Fh 6= 0 and following the line of analysis used to prove
the i- part of the theorem , (21) is again strictly output passive
w.r.t ṗ. Thus we have proved the ii-part of the Theorem.

In the aforementioned analysis it should be stressed that
the input uc + Fh (when p ∈ Ωc) and Fh (when p ∈ Ω ∧
p /∈ Ωc) preserves its continuously as we enter or leave Ωc.
Thus, avoiding possible instability effects that may be caused
otherwise.

V. EXPERIMENT

To demonstrate the effectiveness of the proposed method-
ology, we consider a surgical procedure where a user want
to move the tool tip in the vicinity of a kidney but not its
adjacent vessels via kinesthetic guidance of a master device.

A. Experimental Setup

To emulate a master slave setup, a 7-dof KUKA LWR4+
robotic manipulator was used as the master and an identical
virtual manipulator as the slave device. A 3-D point cloud
of an internal human organ is imported into a virtual scene
and displayed to the user together with the slave manipulator.
The user has the opportunity to change the current view via
zooming in/out, translating or rotating the view. The user
guides the master by its tool by looking at the virtual scene.
The master’s joint positions are sent to the virtual KUKA.
When a repulsive force is generated at the virtual scene it
is applied to the master tool tip to provide the user with the
required haptic feedback. The repulsive force is visualized
in the scene. A wrist force sensor at the master device is
used to measure the human force for the only purpose of
visualizing it in the virtual scene. The proposed methodology
is implemented in C++ using the FRI library with control
frequency fs = 250 Hz.

We consider the case which the user performs the removal
of a kidney tumor and the surgical tool must not touch the
adjacent vessels. In this experiment, the user was asked to
guide the tool tip, via kinesthetic guidance of the master
device, initially on the kidney and then in the area of
the vessels. The area of the vessels define the constrained
region and their point cloud defines the set Os (Fig. 3a).
Initially the point cloud of the vessels is down sampled
to increase computational performance. The radius of the
spheres dc = 1.768 mm is selected to cover the empty space
based on the cloud’s density. This implies that the tool tip



cannot be guided in a distance equal or smaller of 1.768 mm
from the vessels. In this experiment, the distance d0 for the
activation of the repulsive force, is set to the value d0 = 2.3
cm. This implies that the user will start to feel forces from
the controller when the tip has a distance from the sphere
centers less d0 +dc = 2.4768 cm. Finally, we used k = 0.03
as the gain of the controller.

(a) (b)

Fig. 3. The point cloud of the scene and the nearest spheres to the tool
point. (a) The point cloud of the constrained region of the vessels (red color)
and the operable region of the kidney (green color). (b) The nearest to the
tool point spheres (blue color).

B. Experimental Results

When the user guides the tool tip in the area of the kidney
the distance of the end-effector from Os is large enough and
thus Eq. (6) results in C being an empty set and no repulsive
forces are generated (Fig. 4a). When the user attempts to
reach the vessels, spheres within the selected threshold d0
are found (the blue region in Fig. 3b) and their Artificial
Potential fields starts to produce forces (purple arrow in Fig.
4b). When the operator tries to penetrate the constrained
region by exerting high forces (yellow arrow in Fig. 4c),
he fails, as the controller produces a high repulsive force
close to the vessels (purple arrow in Fig. 4c).

Fig. 5 depicts the norm of the repulsive force along with
the measured minimum distance of the end-effector from the
points in C during the time the operator is guiding the tip
close to the forbidden area and hence the active constraints
have been activated. The repulsive force is the result of all
repulsive forces produced by the spheres belonging in C (Eq.
(9)). Its norm is mainly determined from the closest to the
tip sphere. Notice that the end-effector never touches the
constrained surface (the minimum distance never goes close
to zero). Further notice how the maximum of the repulsive
force occurs at time t = 37sec where the tool reached a
position close to the constraints (approximately at 1.1cm)
which is the case shown in Fig. 4c. The online video of the
experiment is available at https://youtu.be/4qJ4I1uHtSc.

VI. CONCLUSION

A controller was proposed, to guarantee that the tool tip of
a surgical robot will not touch a constraint surface defined
by a point cloud. Artificial Potential fields are utilized to
produce repulsive forces away from the constraints that are

(a)

(b)

(c)

Fig. 4. Experiment with the free-to-move region of a kidney (green) and
the constrained region of human vessels (red). With yellow arrow the force
exerted by the operator on the robot, with purple arrow the repulsive force f
of the controller, sensed by the human and with blue points the set Os. (a)
The operator moves along the area of the kidney, where no repulsive force
is generated. (b) The operator moves the robot close to vessels starting to
feel the resistance of the repulsive force. (c) The operator tries to violate
the active constraint by applying high forces, which are resisted by high
repulsive forces.

activated around the points closer to the tool. The closed-
loop system is proven strictly output passive with respect to
the end-effector velocity guaranteeing constraint satisfaction.
Experiments are conducted using a KUKA LWR4+ robot,
demonstrating the effectiveness of the proposed method.
Extension of this work on calculating the repulsive force
by taking into consideration the whole tool body, instead of
only the tool point, can be found in [15].



35 36 37 38 39 40 41 42 43 44 45

Time(sec)

0

20

40

60

N
o
rm

of
th
e

re
p
u
ls
iv
e
fo
rc
e(
N
)

35 36 37 38 39 40 41 42 43 44 45

Time(sec)

0.01

0.015

0.02

M
in
im

u
n
d
is
ta
n
ce

T
o
ol

ti
p
-A

C
(m

)

Fig. 5. Diagram of the norm of the repulsive force and the minimum
distance of the end-effector from the points on the constrained region
surface.

APPENDIX

A. Preliminaries about passivity and stability

Consider a nonlinear system

ϕ̇ = W(ϕ,u),ϕ0 = ϕ(t0) (22)
y = H(ϕ)

where ϕ ∈ Rn is the state, y ∈ Rp is the output and u ∈ Rm

is the input of system (22).
Definition 1: Dissipative system [16]
System (22) is said to be dissipative with supply rate

w(ϕ,y,u) : Rn × Rp × Rm → R, if there exists a positive
semidefinite smooth real function S(ϕ) : Rn → R such that:

Ṡ(ϕ) ≤ w(ϕ,y,u). (23)
Definition 2: Strictly output passive system [17]
System (22) with p = m is said to be strictly output

passive, if it is dissipative with respect to supply rate
w(u,y) = uTy − ρyTy, for ρ > 0.

Definition 3: 0-GAS system [18]
System (22) is said to be 0-GAS if the 0-input system

ϕ̇ = W(ϕ, 0) is globally asymptotically stable.

B. Convergence

Lemma 1: Suppose c : [0,∞) → Rw and satisfies
‖c(t)‖ ≤ ne−λt for all t ∈ [0, ∞) where n, λ > 0. Then∫∞
0

c(t)dt converges.
Proof: Since we have 0 ≤ ‖c(t)‖ ≤ ne−λt for all t ∈

[0, ∞) and
∫∞
0
ne−λtdt converges to a constant, by the di-

rect comparison test (Theorem 2) we obtain that
∫∞
0
‖c(t)‖dt

converges to a constant. Then 0 ≤ ‖ci(t)‖ ≤ ‖c(t)‖1 ;
thus using again the direct comparison test we obtain that∫∞
0
‖ci(t)‖dt is convergent to a constant. However, using the

Theorem 3,
∫∞
0
ci(t)dt converges to a constant and therefore∫∞

0
c(t)dt convergences to a constant as well.

1ci(t) denoting the ith element of the c(t) vector.

Theorem 2: Direct Comparison Test [19]
If 0 ≤ z(x) ≤ b(x) for all x ∈ [0,∞) and

∫∞
0
b(x)dx

converges to a constant then
∫∞
0
z(x)dx converges to a

constant.
Theorem 3: Convergence of Improper Integral [20]
If an improper integral

∫∞
a
|f(x)|dx converges to a con-

stant then
∫∞
a
f(x)dx converges to a constant.
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