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Abstract— Dynamical application of active constraints 
during robot-assisted surgery is key to safer and more precise 
minimally invasive surgery. In this article, the proposed method 
dynamically tracks the movement and deformation of the renal 
veins and arteries in real-time and estimates the distortion based 
on 2-D tracking and iterative estimation of the 2-D perspective 
transformation matrix. The proposed method is validated via 
videos taken from nephrectomy on the da Vinci Research Kit. 
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A brief video of this work is available on-line at: 
https://drive.google.com/open?id=1mPsOThLygpTfUCD95
8oPvCtKpvtVFazV 

I. INTRODUCTION 

Despite the increasing adoption of robot-assisted surgery, 
surgical tasks on soft tissue remain under the manual 
execution of the surgeon and her/his maneuvers when reaction 
required at critical situations. Functional outcomes, including 
rates of complications and fatalities, have remained highly 
variable owing to human factors, such as hand-eye 
coordination and mainly experience. Robot-assisted surgeries 
are led by a surgeon while the robots act as an assistant that 
executing the operator commands. Adding a type of regulation 
to these motions at regions and situations promise substantial 
benefits through improved safety from the reduction of human 
errors and increased efficiency. 

In a Minimally Invasive Surgery (MIS) type nephrectomy, 
renal veins and arteries are the most critical parts which should 
be protected during a procedure. Though they are easily 
definable and describable preoperatively,  during surgery this 
is not possible due to numerous physical effects. Soft tissues 
such as blood vessels will move and deform because of tissue 
manipulation, change of patient’s pose, breathing and 
heartbeat. This requires an approach which can track and 
estimate these changes during surgery in a real-time manner, 
to be computationally feasible and adaptable. 

In the last decades, assistive applications such as Active 
Constraints (AC) [1] for motion regulating are developing to 
assist surgeons. Even though these applications suffer from 
soft tissue movements and changes in camera orientation 
majority of the literature, assumes that the environment is 
stable enough for the use of static active constraints [2]. To 
overcome this lack of literature, a solution is proposed which 
bridges this gap and introduces the implementation of 
dynamical AC in Robot-Assisted MIS (RA-MIS). Once they 
are transformed accordingly to the real tissue deformation, the 
tissue protected will stay continuously inside the Safety Area 
(SA) which the robot will use as a constraint to its movement. 

This paper is structured as follows: In Section II used 
methods described accordingly to the phase they were used in; 
in Section III numerical results are described. Finally, 
discussion and conclusions are reported in Section IV. 

II. METHODS 

An overview of the proposed algorithm with three main 
functions, optimization techniques and AC implementation 
will be given in this section. 

A. Proposed Algorithm 

The proposed algorithm will be introduced in three 
sections, respectively. In addition optimization techniques 
will be discussed. For the developing algorithm Python 
programming language used with OpenCV libraries. 

1) Initialization of Tracking Algorithm 

The initialization phase, or start-up, consists of providing 
the system with the reference AC. In addition, a model buffer 
which acts as a storage for SA models, is filled with the initial 
model for further autonomous localization and redefinition of 
the AC in the case of tracking performance drop. 

2) Tracking Algorithm 

Once initialized, tracking is applied between the latest two 
concurrent frames. Preprocessing is required to handle 
environmental noise while preserving morphological 
definitions of the tissue. A combination of edge detection [3] 
and feature detection [4] are used to adapt each frame for the 
particular application in this method and used as input into 
Lucas-Kanade (LK) tracking algorithm [5]. Actively model 
buffer is being updated with new and well-posed models. 

A performance metric is used for detecting when tracking 
performance has decreased below a threshold. When it drops 
below this threshold, automated AC localization and re-
definition are done.  

3) Re-Initialization Algorithm 

Using a combination of template matching and feature 
matching, models stored inside the model buffer are matched 
to the current frame to localize the tissue. Upon acquiring a 
good enough estimation of where the tissue is, morphological 
snake algorithm [6] and several binary filters are applied to 
redefine the AC concerning color definitions and morphology. 

 
Fig. 1. Flow-chart of the proposed method. 

4) Optimization Techniques 

Providing a method which will be used in a real-life 
surgical application requires precision and real-time 



 

 

execution. To achieve these, several possibilities described in 
the following were exploited: 

 Template matching in re-initialization is done in parallel; 
 Template features are stored in the buffer to reduce 

workload;  
 Caching of numerical functions for instant execution at the 

following call; 
 Image is compressed with bilateral interpolation. 

B. Method for Implementing Dynamic Active Constraints  

Proposed algorithm, relies on the 2D images. Although 
AC, regulates the motion of robot in 3D space, 3D constraints 
can be projected onto the 2D plane for constraint evaluation 
[1]. Thanks to projection, 3D constraints can be followed and 
updated with respect to the 2D imagery. Surgeon can define 
AC by using an input device to draw contour over a projected 
plane of 3D constraints point cloud. 

III. RESULTS 

Performance results are from 25-fps two videos of 
nephrectomy procedure using DaVinci Research Kit, 
provided by a consulting surgeon. The process is real-time. 

A. Performance of Tracking and Re-Initialization  

Redefinition of AC performance criteria was based on the 
Jaccard similarity coefficient, by calculating the set difference 
of the binary AC contour before and after binary filtering 
(especially affected by erosion). In the following table, the 
mean value and standard deviation of the Jaccard index, as 
seen in the paper of Niu et al. [7] in redefinition for both tests 
are shown. Both videos were cut to exclude large portions with 
the reappearance of the tracked tissue. 

As seen in Table I, means of 0.79 and 0.84 suggest to good 
approximation considering 0 is no match at all and 1 is a 
perfect match between two sets, and a standard deviation of 
10% of the full range is acceptable by the fact that it points to 
a minimal expected Jaccard score of 0.7 or a 70% match in the 
worst-case scenario.  

TABLE I.  Jaccard index distribution 

 Mean Standard Deviation 
Video Sequence 1 0.84 0.09 
Video Sequence 2 0.79 0.11 

 Tracking performance criteria was based on length of 
active tracking without re-initialization. This gives a 
representation on how the tracking is robust to the high 
dynamics of the video concerning object movement, change 
of lightning, change of focus and partial occlusion. Tracking 
timespan, as shown in Table II, in a fairly dynamic 
environment like the one which can be observed in the second 
video of 7.7 [s], and respectfully of 11.2 [s] in a less dynamic 
video, proves that the proposed method is well-posed for long 
term tracking. 

TABLE II.  Tracking time length  

 Longest [s] Average [s] 
Video Sequence 1 11.2 4.8 
Video Sequence 2 7.7 6.1 

By semi-automatic labelling, each frame in the video sub-
sequences to define ground truth [8], Precision and Recall 
were calculated where the overlap metric between this 
method’s redefinition result and the ground truth is Jaccard 
index. In Table III, first column presents the Precision score 
as a fraction of true positives over all retrieved positives (true 

and false positives) of SA detection, while the second column 
is Recall score as a fraction of true positive detections over 
total amount of all relevant instances (true positives and false 
negatives) of SA detection. A precision score which averages 
to approximately 0.85 refers to acquiring only 15% of false 
positives while a recall score averaging to approximately 
0.785 refers to failing to detect 21.5% of visible tissue. The 
works of Penza et al. [9] achieved comparable, yet higher 
Precision and Recall scores. However, this proposed method, 
while acquiring slightly lower results, achieves higher fps and 
is real-time applicable. Tracking phase showed an average of 
75 fps, and re-initialization phase, an average of 11 fps. 

TABLE III.  Precision and Recall score 

 Precision Recall 
Video Sequence 1 0.89 0.83 
Video Sequence 2 0.81 0.74 

B. Outcomes of Tracking in Augmented Reality 

Dynamical tracking of the AC provides adequate 
protection of critical tissues. Not only as tool-to-tissue 
distance but also will notify the surgeon through an 
Augmented Reality adaptation. Another positive outcome is 
that in a situation where the surgeon loses concentration, 
tracked tissue will not because the surgical tool will be 
blocked from accessing that region. 

IV. DISCUSSION AND FUTURE WORK 

In this paper, we presented an algorithm for tracking 
organs to improve the safety of RA-MIS by guiding the 
surgeon. Currently, developed algorithm depends on 2D 
images. We would like to extend this research by combining 
stereo images of endoscope. Besides, absolute camera 
position from the robot was not used for this paper which 
could be implemented to improve stability and repeatability. 
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