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Abstract—Nephrectomy is the main treatment option for renal
cancer. Augmented reality (AR) can assist surgeons in minimally-
invasive nephrectomy. Here, intra-operative deformable registra-
tion for AR is investigated. When tested on kidney phantom,
a RMSE reduction of 13% was achieved with the Free Form
Deformation (FFD) registration algorithm, overcoming rigid reg-
istration approaches (RMSE reduction = 2%). Results suggested
that FFD is a good strategy towards AR for minimally invasive
nephrectomy.
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I. INTRODUCTION

Kidney cancer is the 12th most common cancer, with
338,000 new cases diagnosed annually1. The most spread
kidney tumor is Renal Cell Cancer (RCC), which accounts
for 90% of all malignancies of kidney [1]. A Computed-
Tomography (CT) slice of a patient with RCC is shown in Fig.
1. RCC is highlighted with the blue circle. RCC main treat-
ment option is nephrectomy [1]. Nephrectomy is traditionally
performed in open surgery, which main advantages deal with
the possibility to directly see and touch abdominal structures
as to recognize them. However, from the patient’s side, open
surgery brings risks related to bleeding and infection, as
well as long recovery time. To overcome these drawbacks,
Minimally Invasive Surgery (MIS) has been introduced [2].
In MIS procedures, three or four incisions are made in the
patient’s abdomen to provide access for surgical instruments
and endoscope. MIS leads to proved benefits for the patient
such as reduction of bleeding, pain and risk of infection
and recovery time [2]. MIS can be also performed through
a robotic device (Robotic MIS - RMIS). RMIS potentially
increases MIS accuracy and safety, for example through pro-
viding surgeon’s tremor filtering [3].

The main drawbacks of RMIS are, however, loss of depth
perception, limited field of view and lack of tactile feed-
back [4]. Augmented Reality (AR) has been introduced to
overcome the limitation in the vision. Sensitive structures,
such as vessels, can be identified in the pre-operative plan [5]
and their intra-operative position can be retrieved with AR

1https://www.worldatlas.com/articles/countries-with-the-highest-incidence-
of-kidney-cancer-in-the-world.html

Fig. 1: Renal cell carcinoma (highlighted with the blue circle)
in a computer-tomography slice. Courtesy of Istituto Europeo di
Oncologia (IEO).

systems. The robot can be avoided to enter such forbidden
structures, e.g. with the implementation of Active-Constraints
(AC) control. Intra-operative guidance, rapid identification of
relevant structures and reduction of surgeon’s cognitive load
are among the proved benefits of AR [6].

The application of AR in nephrectomy presents non-trivial
challenges. With respect to the pre-operative phase, abdom-
inal organs, and in particular kidneys, are intra-operatively
deformed by (i) changes in pressure (the patient is insufflated
during nephrectomy) and patient’s position, (ii) clamping of
the renal vessels and (iii) surgeon’s organ manipulation and
dissection. A recent review on AR system in nephrectomy can
be found in [7]. However, the majority of the proposed systems
consider the kidney as a rigid body. Other popular approaches
model kidney deformation with biomechanical models, with
limitations such as high computational cost. A further class
of algorithms use intra-operative imaging, such as cone-beam
CT, to extract the 3D intra-operative anatomy to be registered
with the 3D pre-operative one. However, intra-operative CT
brings additional costs and further radiation dose delivered to
patients.

In this context, the aim of this work is to investigate the use
of deformable registration strategies to tackle intra-operative
kidney deformation for accurate and fast AR in nephrectomy
without requiring additional imaging instrumentation.



Fig. 2: Proposed workflow for augmented reality in nephrectomy. The pre-operative kidney-tumor model (M) is registered to the intra-operative
point cloud (F).

II. METHODS

In this section, the proposed approach to register the pre-
operative kidney anatomy to the intra-operative scene is ex-
plained. The workflow of the approach is shown in Fig. 2. The
proposed approach can be split into the following steps:
Model generation To obtain the pre-operative kidney anatom-
ical model, pre-operative abdominal CT slices were segmented
with a semiautomatic segmentation method, which exploited
deformable-model active contours [8]. From the kidney seg-
mentation mask, the kidney model was obtained with the
fast marching method [9]. As a prerequisite for performing
intra-operative deformable registration (Sec. II-A), the model
vertexes (M ) were retrieved. The model generation was im-
plemented in Slicer2.
Calibration and 3D reconstruction: Intra-operative kidney
stereo-images were acquired with the daVinci Research Kit
(dVRK)3 stereocamera (720x576 pixels, 25 Hz, 80 degrees
field of view). After camera calibration, performed according
to the Zhang calibration method, the intra-operative stereoim-
ages were acquired and dense soft-tissue 3D reconstruction
was performed to retrieve the intra-operative 3D point cloud
(F ) as in [10].
Registration: Deformable registration of M on F was per-
formed with Free Form Deformation (FFD) and B-splines, as
described in Sec. II-A

It is worth noting that, for experimental purposes, abdom-
inal phantoms, obtained from real-patients’ CT images, were
exploited. In particular, kidney-phantom mold was obtained
from the kidney model of a real CT image (the model was
computed as in Model generation). The phantom was then
built with polyurethane, according to [11].

2https://www.slicer.org/
3http://research.intusurg.com/dvrkwiki/index.php?title=Main Page

A. Deformable registration

The deformable registration exploited in this work is
FFD [12]. Indeed, compared with other methods such as thin-
plate splines or gaussian mixture model, FFD requires lower
computational cost, assures a smoother deformation and allows
local control [13], [14], [15].

FFD main idea is to represent the deformation of M as the
deformation of an underlying mesh (Φ) with nx, ny , and nz
control points along x, y and z direction, respectively. The
control-points displacement is computed minimizing a cost
function based on the distance (d(M,F )) between M and F :

d(M,F ) =
∑
~m∈M

min
~f∈F
‖~f − ~m‖2 (1)

Here, the d(M,F ) was minimized with the Levenberg-
Marquardt optimization algorithm [16].

The displacement of a generic point ~m ∈ M with coor-
dinates (x, y, z) was computed using a B-spline interpolation
kernel:

T (x, y, z) =

3∑
l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)φi+l,j+m,k+n.

(2)
where i = |x/nx| − 1, j = |y/ny| − 1, k = |z/nz| − 1, u =
x/nx − |x/nx|, v = y/ny − |y/ny|, w = z/nz − |z/nz|, and
where Bl(u), Bm(v), Bn(w) are the spline basis functions:

B0(u) =
(1− u)3

6
, (3)

B1(u) =
3u3 − 6u2 + 4

6
, (4)

B2(u) =
−3u3 + 3u2 + 3u+ 1

6
, (5)

B3(u) =
u3

6
. (6)



Fig. 3: (Left) Kidney silicon phantom obtained from pre-operative
CT scans. (Center) 3D kidney model and (right) manually-deformed
model exploited to test the registration algorithm experimentally. The
deformed region is highlighted by the red circle.

Fig. 4: (Left) 3D point cloud and (right) 2D point cloud obtained by
projecting the 3D cloud on a plane and retrieving only the edges.

The spline basis functions are known for a given ~m, and
weight the contribution of each φi,j,k to T (~m) considering the
distance between the point ~m and φi,j,k.

III. EXPERIMENTAL PROTOCOL

In this work, the kidney model was obtained from the
anonymized Ircadb2 dataset4. The Ircadb2 dataset contains
an abdominal CT volume of a male patient, acquired with
512x512x167 resolution and voxel size of 0.961x0.961x1.8
mm. Fig. 3 shows the kidney silicon phantom (left) and 3D
model (center).

To test FFD in a controlled environment, first 10 artificial F
were obtained by manually deforming M with Blender5, a free
and open source 3D creation suite. The deformation replicated
tissue-surgical tool interactions, such as tissue manipulation.
Fig. 3 (right) shows an example of applied deformation. FFD
performance was tested also in the 2D case. The 2D tests were
performed on the kidney boundaries, which were obtained by
projecting M on a 2D plane and retrieving the cloud edges, as
shown in Fig. 4. Also for the 2D case, 10 deformation were
applied on the 2D cloud. In both cases, the maximum allowed
number of FFD iterations (maxiter) was 10000.

To evaluate the registration-algorithm performances, the
Root Mean Square Error (RMSE) reduction before and after
the registration (−∆RMSE) was used:

−∆RMSE =
RMSEinitial −RMSEfinal

RMSEinitial
(7)

4https://www.ircad.fr/research/3d-ircadb-02/
5https://www.blender.org/

Fig. 5: Root Mean Square Error (RMSE) reduction (−∆RMSE) after
registration. The −∆RMSE , computed for all model points ~m ∈M ,
is reported for 2D and 3D registration for Iterative Closest Point (ICP)
and Free Form Deformation (FFD).

Fig. 6: Root Mean Square Error (RMSE) reduction (−∆RMSE) after
registration vs computational time. Results are relative to Free Form
Deformation (FFD) registration

where RMSE =
√
d(M,F ).

The performance of FFD were compared with the perfor-
mance of a rigid registration algorithm, the Iterative Closest
Point (ICP) [17]. The −∆RMSE obtained for ICP and FFD
were compared using the Wilcoxon test with α = 0.05 to
assess whether significant differences existed.

From one of the 10 deformed M in 2D, we evalu-
ated how FFD −∆RMSE varied according to maxiter =
(1,10,100,1000,10000) and we measured the computational
time required by the FFD algorithm.

Fig. 7: (Left) Pre-operative kidney model (green) and intra-operative
point cloud acquired on silicon phantom (blue). (Right) Deformed
pre-operative model (red) after registration with free form deforma-
tion.



TABLE I: ROOT MEAN SQUARE ERROR (RMSE) WITH
INCREASING DEFORMATION AMPLITUDE

RMSEinitial (mm) RMSEfinal,FFD (mm) −∆RMSE

0.34 0.29 0.13
0.53 0.33 0.37
0.56 0.33 0.41
0.65 0.34 0.47
0.74 0.46 0.38
0.87 0.37 0.58

Initial (RMSEinitial) RMSE and RMSE after free form deformation
(RMSEfinal) are reported for the 2D case. The RMSE reduction
(−∆RMSE) is reported, too.

The FFD was finally tested for registering the kidney model
on real intra-operative point cloud, which was obtained by
acquiring phantom images and performing 3D reconstruction
as in Calibration and 3D reconstruction.

IV. RESULTS

The ICP and FFD −∆RMSE for the 2D and 3D cases
boxplots are shown in Fig. 5. For the 2D case, median
−∆RMSE was 0.05 (with interquartile range (IQR) of 0.09)
and 0.64 (IQR = 0.60) for ICP and FFD, respectively. For the
3D case, median −∆RMSE was 0.02 (IQR = 0.03) for ICP
and 0.13 (IQR = 0.13) for FFD. Significant differences were
found when comparing ICP and FFD both for the 2D and 3D
case. The values of −∆RMSE when maxiter was changed
in (1,10,100,1000,10000) are shown in Fig. 6. In particular,
the time required by the FFD registration is reported. The
−∆RMSE for the 6 manually deformed F with increasing
deformation amplitude is shown in Tab. I. The results of the
FFD registration on real phantom point cloud are shown in
Fig. 7.

V. DISCUSSION AND CONCLUSION

With our experimental protocol, FFD provided a more
accurate registration than ICP with statistical evidence. The
relation between computational time and −∆RMSE suggested
that stopping FFD after few iterations can be a good solution
to achieve a trade-off between computational time and reg-
istration accuracy. The results in Tab. I shows that FFD is
robust to different level of deformation. The visual analysis of
the registration outcome in Fig. 7 showed that the registration
was successfully performed also with real point cloud.

As future work, to further automatize the registration pro-
cess, we aim at exploiting strategies for the automatic intra-
operative point-cloud segmentation, as to identify automati-
cally which are the corresponding regions to be registered [18].
To conclude, this work can be also exploited as a promising
strategy towards the automatic identification of AC in AR
systems for nephrectomy.
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