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Teleoperated robotic systems are widely spreading in multiple different fields, from

hazardous environments exploration to surgery. In teleoperation, users directly

manipulate a master device to achieve task execution at the slave robot side; this

interaction is fundamental to guarantee both system stability and task execution

performance. In this work, we propose a non-disruptive method to study the arm

endpoint stiffness. We evaluate how users exploit the kinetic redundancy of the arm

to achieve stability and precision during the execution of different tasks with different

master devices. Four users were asked to perform two planar trajectories following virtual

tasks using both a serial and a parallel link master device. Users’ arm kinematics and

muscular activation were acquired and combined with a user-specific musculoskeletal

model to estimate the joint stiffness. Using the arm kinematic Jacobian, the arm end-point

stiffness was derived. The proposed non-disruptive method is capable of estimating the

arm endpoint stiffness during the execution of virtual teleoperated tasks. The obtained

results are in accordance with the existing literature in human motor control and show,

throughout the tested trajectory, a modulation of the arm endpoint stiffness that is

affected by task characteristics and hand speed and acceleration.

Keywords: human-robot interaction, surgical teleoperation, arm end-point impedance, musculoskeletal model,

master devices comparison

1. INTRODUCTION

Teleoperated robotic systems are widely used in several long-short range application fields, from
plant decommissioning (Cragg and Hu, 2003), environment exploration (Mitsou et al., 2006),
hazardous material handling and surgery (Johnson and Somu, 2016). In order to control the
remotely operated system, the user interacts with a master interface, a robot whose precise and
accurate manipulation allows task execution at the slave side. The design of master interfaces
is a fundamental aspect in teleoperation, indeed several studies focused on the master devices
physical and control characteristics to achieve control transparency while assuring system stability
(Fischer et al., 1990; Conti et al., 2014; Enayati et al., 2016). In teleoperation, stability of human-
robot interaction (Colgate, 1994) is guaranteed by closing the control loop with the user sensory
and motor systems and, in this context, both the robot and the user are considered as passive
elements (Lee and Spong, 2006). Therefore, although the design of master devices architecture
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relies on the human user to achieve stability, the high variability
that characterizes human control strategies are usually neglected.
In fact, in human motor control, task stability is achieved by
regulating the dynamic proprieties of the limbs throughmuscular
activation. The arm impedance and its components (viscosity,
inertia and stiffness) can be modified to adapt to different
tasks and desired interactions by tuning muscle contractions
and varying joint angular position, . As the most predominant
component, the arm stiffness also directly depends on the joint
angular velocity, reflex modulation and the presence of expected
perturbations (Flash and Mussa-Ivaldi, 1990). Previous studies
(Burdet et al., 2001) demonstrated the existence of control
strategies employed to achieve stability through the regulation
of the arm endpoint stiffness in terms of maximal value and
orientation. Other studies showed the importance of stiffness
regulation during complex tasks execution and motor learning
(Osu et al., 2002; Gribble et al., 2003; Buzzi et al., 2017).

Up to now, the dynamic proprieties of the human arm have
not been fully considered in the control and optimization design
of the master interfaces (Hadavand et al., 2014; Qiu et al., 2014).
Through robust and continuous estimation of arm stiffness, it
would be possible to implement a master controller able to adapt
and regulate the physical interaction between the robot and
the human (Tsumugiwa et al., 2002; Ajoudani et al., 2012) in
order to achieve better performance, higher resistance to external
perturbations, and possibly reducing muscular fatigue (Wiker
et al., 1989).

In order to estimate the human arm stiffness, several
methods and devices have been proposed in literature: Flash
et al. (Flash and Mussa-Ivaldi, 1990) as well as Gomi et al.
(Gomi and Kawato, 1997) used planar robotized handles fitted
with force sensors to record the interaction forces between
the subjects hand and the robot when known displacements
were applied. Force and displacement variations were used
to compute hand stiffness in multiple directions. While these
methods produce a measurement of the stiffness during postural
maintenance, they cannot be applied to the study of stiffness
during movement and task execution without interfering with
arm kinematics. To overcome this limitation, microscopic
displacements combined with a time frequency analysis were
used to estimate the mechanical proprieties of the arm during
a single reaching movement (Piovesan et al., 2013). Following
an electromyography (EMG) based approach, recent works
(Darainy et al., 2004; Shin et al., 2009; Ajoudani et al.,
2015), estimated the arm endpoint stiffness using simplified
planar musculoskeletal models and recorded surface muscle
activations from couples of shoulder and arm antagonist
muscles. Muscular models were used to estimate the force
direction and arm of muscular units, while force intensities were
obtained through calibration from the recorded EMG signals
and the maximal voluntary contractions. Although the simplified
musculoskeletal models showed the ability to estimate the arm
endpoint stiffness during task execution and without applying
perturbations to the user kinematics, stiffness computation was
limited to specific planes and directions thus neglecting the
effects of other couples of muscles, such as the wrist flexor/
extensors.

In this work, we present a non-disruptive method for the
computation of the arm endpoint stiffness based on a user specific
7 degrees of freedom (DoF) musculoskeletal model of the upper
limb (Delp et al., 2007). The dynamic characteristics of the model
as well as the activation dynamics of muscle units are used in
conjunction with joint kinematics and EMG signals to obtain a
continuous estimation of the arm stiffness (Pizzolato et al., 2015).

The aim of this work is to evaluate how different master
devices and tasks influence the regulation of arm endpoint
stiffness and its relation with task performance, hand speed
and acceleration. We developed two planar tasks consisting
in the position and orientation control of a virtual tool.
The two task variations were intended to trigger the use of
different biomechanical DoFs to demonstrate the influence of
such constraints on the estimation of end-effector stiffness. We
compared a parallel link (PL) and a serial link (SL) master
device, to test how the differences between the two manipulators
would elicit different levels of arm end-point stiffness during
virtual teleoperation. During task performance, arm kinematics
and EMG signals were acquired using an optical and a magnetic
tracking systems).

Our primary hypothesis is that end-effector stiffness would
be modulated according to both the mechanical features of
the master device and the task characteristics. In particular,
we expect the users to generate higher overall end-point
stiffness when teleoperating with the serial link master device,
characterized by lower structural stiffness and apparent mass.
We also expect the users to increase arm stiffness while
performing the second task; due to the increased complexity of
simultaneously controlling position and orientation of the virtual
tool. Our second hypothesis is that end-point stiffness would
be modulated accordingly to curvature variations throughout
the trajectory. More specifically, we believe that high curvature
can be associated with higher complexity in executing the task,
leading to higher values of arm end point stiffness. As third and
final hypothesis, we expect a correlation between the hand speed
and acceleration and arm end-point stiffness so that the users
would generate the maximal levels of stiffness during slow and
non accelerated movements.

2. MATERIALS AND METHODS

In order to analyze the stiffness regulation during virtual tele-
operated tasks, we created a simple teleoperation scenario in
which the users interacted with master devices to control virtual
tools used to perform specific tasks.

2.1. Tasks Design
Simple repeatable and cyclical planar virtual tasks were developed
to challenge the users with different levels of complexity without
requiring any surgical expertise.

1. Half Cloverleaf (HC)
Figure 1, 1 shows the first virtual trajectory which represents
half the cloverleaf motion as presented by Levit-Binnun et al.
(2006). A virtual stylus shaped tool was manipulated in the
simulated environment to follow the trajectory, starting from
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FIGURE 1 | The figure represents the two trajectories designed. Task 1. A line following task shaped as an half cloverleaf (HC). The aim to to finely follow the trajectory

starting from the green dot and moving anti-clockwise. Task 2. In the task, shaped as a thicker half cloverleaf (SFHC), the users have to orient the tool’s cylindrical

end-effector along the trajectory (2.1–2.4).

the initial position (green dot in Figure 1, 1) and moving first
counter-clockwise, then straight crossing the intersection in
the middle, finally in a clock-wise direction to return to the
starting position. In order to make the subject perform the
task approximately in the x-y plane of a three-dimensional
Cartesian reference frame, a visual cue was provided in the
form of the path color which turned green when the tool-tip
of the stylus was in the said plane (−1mm < z < 1mm), red
otherwise.

2. Shape Fitted Half Cloverleaf (SFHC)
The second task was designed to include wrist rotation as the
subjects were asked to navigate a virtual cylindrical shaped tool
tip along the path, as shown in Figure 1, 2. The trajectory that
the users were requested to follow was identical to the one of
the previous task, with the added complexity of following the
trajectory silhouette using the tool end-effector. Starting from
the green dot (Figure 1, 2), the users were asked to slide the
tool end-effector over the shape fitted trajectory (see Figure 1,
2.1) . In order to follow the first portion of the trajectory, the
users needed to flex the wrist until the central intersection
was reached (see Figure 1, 2.2) and then to extend it to reach
the top left. At the trajectory upper end (red dot in Figure 1,
2.2), the users had to flex the wrist and abduct the shoulder to
reposition the tool end-effector on the shape fitted trajectory
(see Figure 1, 2.3). Similarly, the users had to reach the lower
open end (see Figure 1, 2.4) to complete the task. As in the
previous task, the visual feedback consisted in the change of
the path color to green when the tool tip lied in the desired
plane.

2.2. Experimental Setup
2.2.1. Master Devices
The subjects were controlling the virtual tools position and
orientation using two different master devices: a 7 DoFs parallel
links haptic interface (PL) and a 6 DoFs serial links haptic
interface (SL).

FIGURE 2 | Experimental setup: the user performs the task looking at a

monitor laid flat on a table (1) while teleoperating using either a parallel link

haptic device PL (2) or a serial link haptic device SL (3) while the thorax and

arm kinematic are acquired with an optical camera (4) and reflective markers

(5) and with electromagnetic tracker (6) and markers (7). The EMG activation is

also acquired with bipolar electrodes (8).The virtual reference frame (9) and the

shoulder reference frame (10) are grossly aligned in the setup phase.

A Force Dimension Sigma7 (Force Dimension, Nyon,
Switzerland) was used as PL (see Figure 2, 2). The master
device, gravity compensated, is characterized by 6 DoFs plus a
grip control, has a resolution of 0.0015mm and 0.013◦ and an
elliptical dome workspace with radiuses of approximately 190 ×
130mm. Thanks to its design, the translational and rotational
degrees of freedom are completely decoupled, and the grasping
unit has an apparent mass of 259 g (Tobergte and Helmer, 2013).
The parallel-link structure also contributes to produce a system
stiffness of approximately 14 N/mm.

A Phantom Omni (3D Systems, South Carolina, USA) was
used as SL (see Figure 2, 3). The device is characterized by a
0.055mm resolution, a 160 × 120 × 70mm workspace and its
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controlled through a stylus end-effector. Even though the device
is not gravity compensated, which means that the tele-operator
had to sustain the stylus and part of the links weight when
manipulating it, it is characterized by an apparent mass at the
tip of 45 g. Due to its design, the system stiffness components are
not constant in the three axes, ranging from 1.02 N/mm to 2.31
N/mm.

Such differences in the master devices dynamic proprieties,
both in terms of apparent mass of the end-effector and system
stiffness, contribute to create a higher sense of stability while
teleoperating with PL.

For both the SL and PL master devices custom impedance
controllers were developed using the proprietary API. In both
master devices, the users handmovements were downscaled with
a factor of 2. The described tasks were designed to fit within the
workspaces of both devices in order to avoid the necessity of
using the devices clutching option. If used, the clutching would
allow to decouple the virtual tool position from the master device
end-effector position, allowing to reconfigure the arm when
hitting the workspace limits. This option was excluded from the
experiments since it would have caused significant kinematic
variability during task execution.

2.2.2. Acquisition Framework
The users thorax and arm position and configuration were
acquired using two localization devices calibrated to the same
reference frame with a hand eye calibration approach (Horaud
and Dornaika, 1995). The thorax position was acquired using
an optical localization system (see Figure 2, 4) [Vicra, Northern
Digital, Ontario, Canada, 20 Hz sampling rate, 0.25 mm
position Root Mean Squared Error (RMSE)] using three passive
retroreflective markers attached to the right and left acromions
and next to the jugular notch.

The arm configuration was measured using an
electromagnetic localization system (see Figure 2, 6) (Aurora,
Northern Digital, Ontario, Canada, 30 Hz sampling rate,
0.48mm and 0.3◦ position and orientation RMSE, dome shaped
field with a radius of approximately 500mm) and three 6-DoF
1.8 × 9 mm electromagnetic sensors (see Figure 2, 7) that were
used to generate 6 corresponding virtual markers calibrated on
the users recognizable bony landmark on elbow, wrist and hand.

EMG signals were recorded through a TMSi Porti device
(Twente Medical Systems International, Oldenzaal, Nederland,
32 channel acquisition system, 2,048 Hz sampling rate) using 10
bi-polar electrodes (see Figure 2, 8). Three couples of electrodes
were used to acquire the electromyographic signals from the
anterior, lateral and posterior deltoid fiber bands (Figure 3, 1-
2-3). Two couples of electrodes were used to acquire the long
and lateral triceps brachii heads (Figure 3, 4-5) and a single
couple was used to acquire the biceps muscle (Figure 3, 6).
Four electrode couples were used on the forearm to measure
the activation of the brachioradialis, flexor carpi ulnaris and
radialis and extensor digitorum (Figure 3, 7-8-9-10). The mono-
polar electrode used as reference was attached to the users’
left hand. The muscular maximal voluntary contraction (MVC)
was recorded right before the experiments: each subject was
asked to perform a set of different isometric contractions against

FIGURE 3 | Surface electromyography electrodes placement: 1-2-3 for the

anterior, lateral and posterior deltoids, 4-5 for the long and lateral trisceps

brachii, 6 for the biceps, 7-8-9 for the brachioradialis, flexor carpi radialis and

ulnaris respectively and 10 for extensor digitorum.

static resistance with different joint configurations (Lehman and
McGill, 1999). The different movements were designed to elicit
the activation of the muscles responsible for the same kinematic
function: for instance, the biceps’ MVC was recorded by asking
the users to push the hand palm against a tabletop bottom
while flexing the elbow; similarly, the forearm flexors’ MVC were
acquired during isometric wrist flexions against static objects.
The contractions lasted for about 5 s and were followed by a
second trial after 30 s, to avoid muscular fatigue. The mean
of the two maximal absolute values registered during the two
repeated movements was extracted from the conditioned signals
for each muscle. The MVC signals were processed with the same
procedure as the EMG signals recorded during the experiments.

Retroreflective and electromagnetic markers movements and
EMG signals were acquired, recorded and synchronized using
custom developed software based on the Robotic Operating
System (ROS, http://www.ros.org/).

2.2.3. Experimental Protocol
We recruited 4 healthy subjects (2 female and 2 male, mean age
23± 1.5) who provided informed written consent, in accordance
with the recommendations of Politecnico di Milano Ethical
committee Board. All subjects gave written informed consent in
accordance with the Declaration of Helsinki.

The subjects were sitting in a comfortable chair without arm
rests, in front of a 2D monitor screen where the virtual tasks
were displayed (Figure 2, 1) . The chair position was adjusted
in order to allow an easy interfacing between the subjects and
the tasks. The monitor was laid as flat as possible on the table
to be approximately parallel to the plane in which the tasks were
performed, allowing for the most intuitive control, in which the
users hand movement directly corresponded to the virtual tool
movement.
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TABLE 1 | Experiments list and description.

Experiment acronym Master device Task Number of trials

PL1 PL HC 10

PL2 PL SFHC 10

SL1 SL HC 10

SL2 SL SFHC 10

Each user was asked to perform ten trials of every task
while trying to maintain the hand movement on a constant
plane, exploiting visual color feedback as explained in section
2.1. Subjects were instructed to perform HC and SFHC tasks
finding a personal trade-off between precision and execution
speed. Table 1 describes the four experiments performed: for
each subject the experiment order was randomized so that users
performed the 10 repetitions of a randomly selected condition
before moving on the next randomly selected one.

2.3. Stiffness Computation
The kinematic and dynamic characteristics of the user arm
movements, as well as their muscular activations were obtained
and elaborated to compute the arm end-point stiffness during
task execution.

2.3.1. Kinematic Analysis
The arm and thorax spatial configuration were reconstructed
using the experimental markers data and the musculoskeletal
model implemented in OpenSim (Delp et al., 2007). The
model, whose capabilities in predicting the arm dynamics were
previously assessed (Saul et al., 2015), is derived from Holzbaur’s
model (Holzbaur et al., 2005) and composed by seven DoFs
activated by 32muscle compartments. Themodel was scaled to fit
the anthropometric characteristics of each subject and its virtual
markers were displaced to the average real markers position
acquired during a static pose.

The markers position data were filtered by applying an IIR
second order Butterworth filter twice, reversing the time in the
second filtering in order to cancel the non linear phase shift. Filter
cutoff frequency was set to 4 Hz (-6 dB) and the filtered data were
used as input for the inverse kinematics. The inverse kinematic
algorithm solves the minimization problem in Equation (1) for
each set of marker coordinates.

min
q

[
∑

k∈N = number of markers

wk‖x
exp

k
− xk(q)‖2] (1)

Where q is the vector of joint angles, x
exp

k
is the experimental

3D position of the kth marker, acquired using the optical
or the magnetic tracking device, xk(q) is the position of the
corresponding virtual marker on the model that depends on the

vector of joint angles q, andwk is the k
th marker weight thorough

which is possible to account for the uncertainty related to each
marker position detection. For each set of marker coordinates,
the algorithm finds the best joint vector q that minimizes the
error between the experimental marker position vector xexp and
the virtual markers position vector x(q), which is a function of
the fixed model geometry and joint vector, q.

In order to define the correct weighting vector w =
[w1, . . . ,wk, . . . ,wN] with N = number of markers, we analyzed
the markers positions during a static recording. The ratio
between the standard deviations from optical markers and
electromagnetic markers is comparable with the ratio between
the RMSE characteristics of each device. We therefore weighted
the thorax optical markers with a coefficient of 1, while the arm,
forearm and hand electromagnetic markers with a coefficient of
0.52 (obtained from the ratio between the nominal RMSE for the
optical tracker, 0.25mm and the electromagnetic tracking device
RMSE, 0.48mm).

2.3.2. Dynamic Analysis
The obtained joint angles were filtered with an IIR second order
Butterworth filter (cutoff frequency 4 Hz) twice, compensating
the nonlinear phase shift. The filtered data were used as input
for the inverse dynamic reconstruction, along with the model
dynamic characteristics (masses and inertial proprieties of each
model segment). Equation (2) shows the dynamic equation when
no external forces are applied to the arm; τ is the unknown (7
× 1) vector of joint torques, M is the system mass matrix, C is
the vector of Coriolis and centrifugal forces, G is the vector of
gravitational forces, while q, q̇, q̈ are the vectors of joint position,
velocities and accelerations, respectively.

τ = M(q)q̈− C(q, q̇)− G(q) (2)

2.3.3. EMG-Informed Torque Estimation
A refined estimation of the joint torques was obtained using the
Calibrated EMG-informed Neuro-Musculoskeletal (CEINMS)
modeling toolbox in which the musculotendon unit (MTU) force
arms obtained with the inverse kinematics are used with the
joint torques estimated by the inverse dynamics and the recorded
EMG signals.

The tool firstly calibrates the experimental muscle excitations
derived from the surface EMG acquisition with the muscle
activation patters, obtained from the inverse dynamic algorithm
(Lloyd and Besier, 2003; Sartori et al., 2012). The resultant
calibrated model is then used to predict MTU forces, joint
moments, and muscle activations solving a set of differential
equations that relates the muscle excitation with the electrical
activity recorded (Shao et al., 2009). To be used as an input to
the EMG-informed inverse dynamic algorithm, the EMG data
was previously high pass filtered at 30 Hz, full wave rectified
and filtered with a zero-lag second order Butterworth filter (6
Hz cutoff frequency) (Lloyd and Besier, 2003). The experimental
muscle excitations were normalized using each users maximal
voluntary contractions (MVC).

2.3.4. Stiffness Computation
For each model DoF, the joint stiffness (7 × 7) matrix (Kj) was
computed using Equation (3), where τ (i) is the joint torque
vector that is associated with the q(i) arm configuration at the
ith time instant (McIntyre et al., 1996).

Kj(i) =
dτ (i)

dq(i)
(3)
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In order to obtain the Cartesian representation of the arm
stiffness, the arm end-point Cartesian stiffness (Ke) has been
obtained using the arm kinematic Jacobian J (7× 6), as follows:

Ke(i) = JT
−1
(i)Kj(i)J

−1(i) (4)

Through the Singular Value Decomposition (SVD), the left
singular vectors and non-zero singular values of Ke were
obtained to draw the end-point stiffness ellipsoid orientation
and dimensions that are used as a way of visually represent the
stiffness (McIntyre et al., 1996). The maximal singular value of
Ke is the maximal stiffness value (Kmax(i)) in the ith time instant.

2.4. Metrics and Statistical Analysis
The following performance-related parameters were evaluated:

• 2D distance from the trajectory at the ith time frame, di: the
distance is computed from the tool tip to the closest point
on the trajectory center on the task plane (see Figure 1); it is
calculated as shown in Equation (5).

d(i) = 2

√

(xtarget(i)− xtool(i))2 + (ytarget(i)− ytool(i))2 (5)

Where (x, y)target are the tool tip’s 2D coordinates and (x, y)tool
are the 2D coordinates of the closest point on the trajectory.
The z-component of the displacement from the trajectory was
excluded from the distance metric computation due to the
significant differences that the color visual feedback could
introduce with respect to the other two dimensions.

• Maximal stiffness Kmax: the end-point stiffness ellipsoid main
axis was computed in 29 (for HC) and 23 (for SFHC) equally
spaced points along the task trajectory (for SFHC, the points
corresponding to the open ends were excluded from the
analysis). For each task trial and for each point selected, the
three closest virtual tool positions were searched and the
corresponding maximal stiffness (Kmax(j), Kmax(j + 1) and
Kmax(j − 1)) were averaged to obtain the mean maximal
stiffness estimation as in Equation (6)

Kmax =
1

3
(Kmax(j− 1)+ Kmax(j)+ Kmax(j+ 1)) (6)

With j = 1...M − 1 number of points along the trajectory.
• Curvature C: In both tasks, the trajectory was created to fit the

same Bernulli’s Lemniscate function. The generic function of a
Bernulli Lemniscate curve in a planar x-y plane with the main
axis oriented along the x axis is

(x2 + y2)2 = 2a2(x2 − y2) (7)

Where a is the parameter that defines the position of the curve
foci. The task trajectory curvature (C) can be computed in
polar coordinates using:

C(t) =
3 ∗

√
2 ∗ cos(t)

√
3− cos(2t)

(8)

with t that spans from 0 to 2π . For each 3D point of the
trajectory selected for the stiffness analysis, the corresponding
curvature was computed.

• Hand speed and acceleration: the position and orientation of
the hand in the shoulder reference frame (see Figure 2, 10)
was computed. The speed was obtained performing numerical
differentiation on the x-y-z coordinates, smoothing the signal
with a second order Butterworth filter with cutoff frequency of
4 Hz twice forward and backward. Acceleration was computed
and filtered from hand speed following the same procedure
previously described.

For all the metrics, the statistical distribution normality was
tested for each user in the four experiments PL1, PL2, SL1,
SL2 (see Table 1) using a one-sample Kolmogorov-Smirnov test
with 1% significance level. The arm stiffness data resulted to be
non-normal, therefore, using the natural logarithm function (as
in Wilson and Worcester, 1945), the data was normalized: the
same Kolmogorov-Smirnov test was performed for each user,
repetition and experiment, identifying as normal the 97% of the
distributions. The distance metric, as well as the hand speed and
acceleration had a normal distribution (Kolmogorov-Smirnov
α = 0.01).

2.4.1. Analysis Performed and Hypothesis Tested
All the inferential statistic analysis that will be presented were
conducted with the Statistics and Machine Learning Toolbox for
Matlab 2016b (Mathworks, Natick, Massachusetts, US).

1. Maximal stiffness through the trajectory - The stiffness
maximal values Kmax were first of all studied as a function
of the task type and controller. The distributions of the
normalized stiffness data were compared between users and
repetition, since no significant differences were found, the
users data were grouped together for each experiment

Hypothesis 1 & 2: To analyze whether the task and master
device types, as well as level of trajectory curvature affected
the maximal values of stiffness, the data from the 29 (HC)
and 23 (SFHC) points on the trajectory for each experiment
were grouped. The mean values of maximal stiffness for each
region of curvature and repetition were extracted and a three-
way ANOVAwas performed on the log-normalized data (task,
master device type and curvature region as fixed factors, user
number as random-effect factor). To further test the effects
of the different factors on the end-point stiffness, the same
ANOVA model was also applied to the stiffness variability
in the various regions and repetitions. To test the presence
of possible correlations between stiffness and curvature the
Pearson rank test (α = 0.05) was adopted.

2. Stiffness against hand speed and acceleration - Using two
separate two-ways ANOVAs (task and master device type as
fixed factors, user number as random-effect factor) the hand
speed and acceleration distributions in the four experiments
were analyzed. Hypothesis 3: we tested the hypothesis that a
relation between hand speed and acceleration with respect to
maximal stiffness could exist. For each of the ten trajectory
repetitions, 4 levels of hand speed and acceleration were
obtained in the four experiments and for the 4 users.
Two separated three-way ANOVAs were performed on the
corresponding values of stiffness (task, master device type and
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level of speed/acceleration as fixed factors and user number as
random effect factor).

3. Distance metric - The difference between different trials
of the same experiment for each user was tested using a
one-way ANOVA test (α = 0.05). Since no statistical
difference emerged, the mean values of distance throughout
each repetition and user were extracted. The four experiments’
performance distributions were then modeled with a two-
way ANOVA statistical model, where task and master device
type were considered as fixed factors, while user number was
considered as random effect factor.

3. RESULTS

3.1. Maximal Stiffness through the
Trajectory
Figure 4 shows the results obtained when the mean stiffness
values through the trajectory among users and trials for each
experiment are grouped together. The stiffness values below
a threshold of 0.1 N/m were removed from the analysis: the
threshold was obtained from previous arm end-point stiffness
estimations (Gomi and Kawato, 1997; Tsumugiwa et al., 2002)
and the percentage of values discarded was less than 1% of
the total dataset. The results of the three-way ANOVA analysis
showed no significant interaction between the factors, and a
statistical difference between tasks (HC and SFHC) [F(1, 624) =

FIGURE 4 | Maximal stiffness (Kmax ) distribution in the four experiments for

the four increasing levels of curvature. The results are presented using boxplot

indicating median, first and third quartile, minimal and maximal values.

Horizontal lines over the boxes indicate statistical difference while the number

of stars indicate different levels of significance (**p < 0.01).

10.06, p < 0.005] while no significant difference was found
between the master devices [F(1, 624) = 0.14, p = 0.70]. Overall,
users elicited significantly higher arm stiffness when performing
the HC task with respect to SFHC. Figure 5 shows the end-
point stiffness variability in the four experiments. The three-way
ANOVA test showed no significant interactions among factors
and statistical difference between both tasks [F(1, 624) = 7.75, p <

0.01] and master devices [F(1, 624) = 7.64, p < 0.01]. Interestingly
while the stiffness variance increases in the SFHC task when
teleoperating with PL, when teleoperating with the SL master
device, instead, users decreased the arm stiffness variance when
performing SFHC with respect to HC. Overall, users explored
the highest range of end-point stiffness in HC when teleoperating
with SL and showed the lowest variance with the same master
device in the SFHC task.

To further analyze stiffness modulation through the 29 (for
HC) and 23 (for SFHC) points along the trajectory while
teleoperating with the PL and SL master devices, Figure 6 shows
the median values obtained for each experiment. The results are
presented as a tri-dimensional graph where each point mean
Kmax value is represented as a colored column (see Figure 6).
No evident trends can be found in stiffness maximal values
modulation through the trajectory points.

Regarding the end-point stiffness mean values relation with
curvature, the three-way ANOVA showed significant difference
[F(3, 624) = 28.19, p < 0.0001] between the four different levels
of curvature. The box-plots in Figure 7, 3 show the maximal

FIGURE 5 | Variance of maximal stiffness (Kmax ) in the four experiments for

the four increasing levels of curvature. Horizontal lines over the boxes indicate

statistical difference while the number of stars indicate different levels of

significance (**p < 0.01).
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FIGURE 6 | Maximal stiffness Kmax from all the users and trials in each point along the trajectory is presented: the height and color of each column indicates the

corresponding point median. To account for the difference in terms of median values from experiments PL1 and SL1 compared with PL2 and SL2, a custom

color-map was designed. Kmax values from 0 to 4 N/m are plotted with colors from light blue to purple, while Kmax values from 4 to 40 N/m range from a dark red to

bright yellow.

stiffness distribution as function of four levels of trajectory
curvature for PL and for SL. Although characterized by high
interquartile distances, the similar behavior can be observed
for PL and SL and in the two tasks: the smallest Kmax mean
values are registered where the normalized curvature is <0.25
while the maximal values appear in the range between 0.75
and 1. Interestingly, while for the hybrid parallel-serial link
master device (PL) the end-point stiffness behavior in HC and
SFCH shows the same trend, with an apparent plateau in
the middle curvature zones, different behaviors can be seen
with SL. In this case, HC shows a clear increase in the mean
value of maximal stiffness with increasing levels of curvature,
while in SFHC users were eliciting very small variations of
arm end-point stiffness. Due to the high variance in the data,
Pearson correlation analysis showed non-significant (p > 0.05)
correlations for all the experiments. Furthermore, regarding the
stiffness variability in the four regions of curvature, the three-way
ANOVA test showed no significant differences [F(3, 624) = 1.54,
p= 0.20].

3.2. Stiffness against Hand Speed and
Acceleration
Figure 8 shows the speed and acceleration distribution in the
four experiments; the two separated two-ways ANOVAs showed
significant differences in tasks and master devices in both speed
[F(1, 156) = 998 p < 0.0001 and F(1, 156) = 36 p < 0.0001,
respectively] and acceleration [F(1, 156) = 1,300 p < 0.0001,
F(1, 624) = 180 p < 0.0001, respectively]. The two separate three-
way ANOVAs showed no significant interaction among task,
master device type and level of speed or acceleration; a main

significant effect was found for the task type [F(1, 624) = 10.23,
p < 0.005 when the data was grouped in levels of speed and
F(1, 624) = 10.23, p < 0.005 for levels of acceleration] while
no significant effects were found for the master device type and
the levels of speed or acceleration. Figure 9 shows the end-
point stiffness distribution with respect to increasing levels of
speed and acceleration for the four experiments. To emphasize
the differences in the stiffness distribution, the non-normalized
stiffness values are presented. The Pearson correlation tests
between the log-normalized data and the hand speed and
acceleration in the four experiments showed low (|p| ranging
from 0.1 to 0.3) non significant (ρ > 0.1) negative correlations.

3.3. Distance Metric
The mean distance value for each repetition was obtained for
each of the 10 repetitions and users and the obtained data sets
were grouped in the four experiments. The results of the two-
way ANOVA with subjects’ number as random-effect parameter
showed a difference between HC and SFHC [F(1, 156) = 548
p < 0.0001] and no difference between PL and SL [F(1, 156) =
2.43 p = 0.1214]. The users were capable of achieving the best
performances, testified by lower distances, with the parallel link
master device (PL) and in the first task (HC). Similarly as seen
with the maximal stiffness values (see Figure 4), the interquartile
distances for SFHC are significantly higher than in HC.

4. DISCUSSION

We evaluated the arm end-point stiffness modulation adopted
by novice teleoperators in performing two tasks with two

Frontiers in Neuroscience | www.frontiersin.org 8 September 2017 | Volume 11 | Article 528

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Buzzi et al. Evaluation of Arm Stiffness during Virtual Teleoperation

FIGURE 7 | Stiffness with respect to curvature analysis. (1) Normalized curvature through the trajectory. (2) Definition of the four regions of normalized curvature. (3)

Box-plot comparing the maximal stiffness value Kmax for the PL master device, on the left, and for the SL master device on the right. The boxes represent the first and

third quartile, while the whiskers represent the minimal and maximal values.

different master devices as a reflection of the control strategies
adopted by the central nervous system to increase the hand
resistance to internal and external noise. Using kinematic and
muscular parameters, we estimated the stiffness and its relation
with the trajectory characteristics and the hand speed and
acceleration.

The difference in maximal stiffness values between the
different task types (as presented in Figure 4) proves that the
users were adapting their stiffness modulation strategies to the
different task characteristics. We were expecting higher values
of end-point stiffness during the execution of the SFHC task,
due to the increased complexity added by the requests to orient

the tool; instead, the stiffness is significantly higher in the HC
tasks. A possible explanation to this result may be that the
users were discouraged to increase the arm stiffness in order
to comfortably activate the wrist joint. In fact, to increase
the overall arm stiffness, it would be necessary to increase
the level of co-contraction also for the wrist flexor-extensors,
potentially impairing the free rotation of the wrist. Therefore,
this significant difference in stiffness values between HC and
SFHC may be explained by the different levels of wrist flexion-
extension activations that were registered in the two tasks. As
an example, Figure 10 shows the wrist flexion-extension patterns
found during the execution of HC and SFHC for a single user
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FIGURE 8 | Distribution of speed (in blue, solid line) and acceleration (in red,

dashed line) in the four experiments. Horizontal lines over the boxes indicate

statistical difference while the number of stars indicate different levels of

significance (***p < 0.0001).

with the PL master device. The same significant difference can be
seen in all the acquired users.

The fact that users were eliciting similar values of stiffness
when teleoperating with the two master devices seems to suggest
that users can compensate for the significant differences in the
master devices mechanical proprieties assuring the same overall
dynamic performances.

Users showed the highest end-point stiffness variability when
teleoperating with the serial link robot during the execution of the
HC task, possibly hinting that for that specific task, the SL master
device’s characteristics offered a less stable and reliable interaction
with respect to PL. Interestingly, while for the PL master device
the request to orient the tool along the trajectory introduced
higher variability in the elicited stiffness, the opposite can be
seen for SL. This discrepancy could be caused by the significant
differences in the master device structural construction: in PL
the hand rotations are completely decoupled from translations
while in SL rotations are less hand-centered. This finding would
therefore endorse the hypothesis that different kind of tasks may
require different master device mechanical characteristics.

The statistical difference in arm stiffness mean values between
different regions of curvature could suggest a relation between
trajectory curvature and stiffness maximal values: in fact, the
users were generally generating the lowest stiffness in the low-
curvature portion of the trajectory. Under the hypothesis that
straight trajectories are easier to follow than highly curved ones,
it is possible that the users were relying on higher stiffness to
increase their performance in the most difficult parts of the
trajectory. On the other hand, this modulation seems particularly
affected by the task and master device characteristics. By looking

FIGURE 9 | End-point stiffness distribution with respect to four increasing

levels of hand speed (in blue) and acceleration (red). The levels of speed and

acceleration correspond to each experiment distribution quartiles.

at the stiffness distributions in Figure 7, it seems that while the
PL master device offers a rather consistent interface for both
tasks, allowing more or less the same modulation in HC and
SFHC, the SLmaster device showed different behaviors in the two
tasks. Specifically, while an increase in the mean stiffness at high
curvature can be seen for the HC task, arm end-point stiffness
was almost constant for SFHC. This discrepancy may suggest
that, during the SFHC task performance, when teleoperating with
the SLmaster device, users weren’t able or didn’t felt the necessity
to adopt the same kinetic strategy that they used otherwise.

The disparity in the speed and acceleration distributions
between the two tasks could lie in the differences in the task
graphical representation: in order to make the SFHC task more
clear, the trajectory thickness is increased with respect to the HC.
In the same way, the tool-tip changes from a small point (in HC)
to a cylinder (in SFHC). These differences could have decreased
the users perception of the distance from the target trajectory thus
reducing the feedback on their actual performance. Consequently
the users performed the task with higher speed. This explanation
seems to be endorsed by the statistically higher mean distances
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FIGURE 10 | Wrist flexion-extension patterns during the execution of HC and

SFHC for a single user: in gray the single normalized task repetitions, red and

blue lines represent the mean joint angle signal for HC and SFHC, while red

and blue areas represent the standard deviation interval.

recorded in SFHC with both master devices. The differences
in mean speed and acceleration between the master devices
are affected by the task request: during HC users where slower
using PL while significantly faster using SL. On the contrary,
the maximal speed for SFHC was obtained with PL, showing
how different tasks may require different types of master devices
in order to be efficiently executed. No statistical difference was
found between the arm stiffness at different levels of speed
and acceleration, but the higher end-point stiffness values and
variability that were seen for some experiments, suggest that,
in those experiments, high stiffness is more likely to occur at
lower speed and accelerations. On the other hand, it appears
that, even though joint speed and acceleration are fundamental
components in the joint stiffness computation, their relation
with arm end-point stiffness can’t be modeled with simple
correlations.

A limitation of this work can be found, first of all, in the
small number of subjects; the number of trials for each task may
not have been enough to account for the high variability that
characterizes humanmotor control. Another limitation lies in the
described differences between the two tasks; the SFHC task, in
fact, differs from HC not only for the necessity or re-orienting
the tool end-effector, but also in terms of trajectory thickness and
tool-tip dimension.

In conclusion, the results obtained suggest that the users tend
to modulate the arm endpoint stiffness with respect to different

tasks and interfaces and that this modulation is influenced by
both the trajectory characteristics and the users’ hand kinematics.
The users were coping with the difference in task design and
master device by adapting their arm stiffness modulation both
in terms of central tendencies and variability. Although affected
by some limitations, these findings prove that the arm dynamic
proprieties are highly variable and that there could be significant
benefits from the estimation of the kinetic proprieties of the
users’ arm during teleoperation. For instance, knowing how the
users modulate their stiffness would allow to develop master
devices able to match and to enhance this modulation, potentially
reducing the energetic cost of the teleoperators while maintaining
high precision. The results obtained could also be used to
improve human-robot interactions during cooperative tasks, as
in Beretta et al. (2015a,b).

4.1. Future Developments
An interesting possible future development would be the
inclusion in the research of a higher number of subjects as
well as expert teleoperators, in order to study and compare the
stiffness modulation strategies that theymay have developed with
expertise. To further understand which are the characteristics
and parameters that play a fundamental role in the human-
robot interaction, it would also be advisable to study how
stiffness relates to other dynamic parameters such as damping
and inertia whose relation to human-robot system stability have
been recently investigated (Dyck et al., 2013). These studies
proved that the human arm behavior can change from passive
to active based on the task performed and on the magnitude of
the force perturbation applied.
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