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ABSTRACT In teleoperated surgery, the transmission of force feedback from the remote environment to
the surgeon at the local site requires the availability of reliable force information in the system. In general,
a force sensor is mounted between the slave end-effector and the tool for measuring the interaction forces
generated at the remote sites. Such as the acquired force value includes not only the interaction force but
also the tool gravity. This paper presents a neural network (NN) enhanced robot tool identification and
calibration for bilateral teleoperation. The goal of this experimental study is to implement and validate two
different techniques for tool gravity identification using Curve Fitting (CF) and Artificial Neural Networks
(ANNs), separately. After tool identification, calibration of multi-axis force sensor based on Singular Value
Decomposition (SVD) approach is introduced for alignment of the forces acquired from the force sensor
and acquired from the robot. Finally, a bilateral teleoperation experiment is demonstrated using a serial
robot (LWR4+, KUKA, Germany) and a haptic manipulator (SIGMA 7, Force Dimension, Switzerland).
Results demonstrated that the calibration of the force sensor after identifying tool gravity component by
using ANN shows promising performance than using CF. Additionally, the transparency of the system was
demonstrated using the force and position tracking between the master and slave manipulators.

INDEX TERMS Artificial neural network, bilateral teleoperation, calibration, tool identification.

I. INTRODUCTION
Teleoperation indicates the remote control of a slave manip-
ulator by a human operator at a remote site [1]. Its appli-
cation has been popular in various areas, and a substantial
recent advantage is provided by medical applications such
as Robot-assisted Minimally Invasive Surgery (RA-MIS).
In particular, bilateral teleoperation draws many research
interests because it provides haptic feedback for the surgeon,
which can ease and improve the surgical tasks performing,
for example, enhancing surgical accuracy [2], optimizing
dexterity and minimizing the trauma of the patient [3], [4],
etc..

The associate editor coordinating the review of this article and approving
it for publication was Rajeeb Dey.

In recent years, researches have proved that it is helpful
for the surgeon to perceive the sensation of touch from the
remote surgical site [5]–[7]. The lack of haptic feedback
in teleoperated surgical tasks could lead to some adverse
effects such as tissue damage, and the operational procedure
can be time-consuming. [8]. Hence, achieving accurate force
sensing on the remote site is of vital importance for bilateral
teleoperation in the robot-assisted surgery using adaptive
compensation [9]–[11].

The demand for measuring interaction forces in RA-MIS
[12] has drawn a lot of interest due to the requirements of
the clinical application with bilateral teleoperation [13], [14].
To sense the interaction force on the remote sites [15], force
sensors need to be mounted between the end-effector of the
slave robot manipulator and the surgical tool. In this case,
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compared to the solution of installation of a force sensor
on the surgical tip, it is possible to ignore the influences
from the sensor size and to reduce the equipment cost [16].
However, it will introduce unexpected disturbances, and the
output of the force sensor acquires not only the interaction
force but also the gravity force applied to the tool. In this
sense, it is necessary to identify the weight force of the tool
and compensate it from the measured value of the force
sensor. Moreover, force sensor calibration remains an issue
for bilateral teleoperation because the directions of the forces
acquired from sensor and robot must be aligned in the same
coordination frame [17].

Several approaches have been introduced for gravity com-
pensation using robot joints angles, which depend on the
robot kinematic and dynamic model [18]–[22]. This problem
has been addressed firstly in [19] using the numerical values
of gravity and inertia terms estimated by the control software
interface FRI. A proportional-derivative (PD) control with
online gravity compensation using joint angles is proposed
for regulation tasks of robot manipulators in [20]. Nonlinear
optimization methods are introduced to extracting feasible
robot parameters from dynamic coefficients in [23]. However,
the above methods depend on the robot kinematic model and
are difficult to transfer to another general industrial robot.
Interestingly, the gravity force applied to the robot tool vari-
ables with the orientation of the robot. Hence, we intended to
model the tool gravity based on the orientation angles. In this
way, the gravity force on the tool can be eliminated based on
the build model.

In a practical application, force sensor calibration method-
ologies should be accurate and with a low computational
burden [24]. As one of the traditional regression algorithms,
least-square optimization method has been widely employed
for modeling the mapping relation between the tool gravity
applied to the robot tool and the orientation angles of the tool
[25]. However, this method is hard to achieve accurate results
and is not practical because it requires the full mathematical
expression of the model and it ignores the nonlinear charac-
teristics existing in the robot system [26]–[28]. In [29], a cali-
bration method was developed by using a pre-calibrated force
plate. Although this method makes the calibration method
easier, the dismantling of the sensor remains an issue [30].
A fundamental problem with most of the calibration methods
[25] in the literature is that they ignore the gravity influence
of the surgical tool and the nonlinear disturbances due to the
setup of the tool, which affects the force sensing accuracy in
the teleoperation system [10], [31], [32].

In this paper, we utilized two different techniques for tool
gravity identification based on Curve Fitting (CF) and Arti-
ficial Neural Networks (ANNs) to modeling gravity force
variance due to tool’s weight according to the tool direction in
the Cartesian space. CF and ANNs are capable of modeling
mapping relationships between multiple inputs and outputs
[33]. The performance of CF and ANNs in terms of modeling
accuracy is implemented and compared with a real robot
application using a serial robot (LWR4+, KUKA, Germany).

FIGURE 1. Link parameters of KUKA LWR4+ robot.

Afterward, the force sensor calibration is achieved with
the classical singular value decomposition (SVD) algorithm.
Finally, a bilateral teleoperation demonstration is performed
to show the transparency of the developed teleoperation sys-
tem by integration with a haptic manipulator (SIGMA 7,
Force Dimension, Switzerland). The main contributions of
this paper comprise:

1) A novel method is proposed to model the tool gravity
using the orientation of the robot.

2) A mathematical model is implemented using CF, and a
comparison with an ANN-based method is utilized to
show the feasibility of the proposed method with real
experiments.

3) A bilateral teleoperation scenario is introduced to
demonstrate the efficiency of the proposed identifica-
tion and calibration method.

The rest of the paper is organized as follows: the kinematic
model of the serial robot is shown in section II, and the
corresponding methodologies are presented in section III,
separately. Section IV presents the experiment validation
and results of the proposed methodology evaluated with the
KUKA LWR4+ robot. Finally, section V concludes and
delineates avenues for further work.

II. KINEMATIC MODEL OF THE SERIAL ROBOT
In this paper, the kinematic model of the 7 Degrees-of-
Freedom (DoFs) LightWeight robotic arm (LWR4+, KUKA,
Germany) is defined using the Denavit-Hartenberg (D-H)
parameters [34] as presented in [19], [33]. Figure 1 shows
the robot in its home position with a force sensor mounted
between the end-effector and the surgical tool. The cor-
responding D-H parameters can be found in our previous
work [33]. According to these parameters, a homogeneous
matrix i

i−1T determines the transformation between two con-
secutive link frames of the serial robot arm from

{
i−1

}
to
{
i
}
.

122042 VOLUME 7, 2019



H. Su et al.: NN Enhanced Robot Tool Identification and Calibration for Bilateral Teleoperation

FIGURE 2. Transformation involved in teleoperated surgical systems. Transformation matrix (omT ) from the master reference frame to the slave tool
reference frame is adopted to couple the motion between the surgical tool and the master manipulator. e

mT is a constant transformation matrix
between

{
m

}
and

{
o
}
, which depends on the actual setup of the platform. e

oT is the transformation matrix obtained from forward kinematics. w
c T is

the transformation matrix between
{
c
}

and
{
w

}
, representing the transformation between the endoscopic camera and the operational target.

The transformation matrix from the robot base frame to its
end-effector frame can be obtained with the forward kinemat-
ics. Moreover, the tool pose can be obtained by multiplying
the link transformation matrix, as follows [35]:

0
ET =

0
1T

1
2 T

2
3 T

3
4 T

4
5 T

5
6 T

6
ET (1)

where ii+1 T is the transformation matrix, as shown in (1).

III. METHODOLOGY
In the practical teleoperation applications, the master haptic
manipulator and the slave robot are different in kinemat-
ics characteristics and workspace size [36], which requires
workspace mapping technique to allow the surgeon to span
the whole workspace of the slave manipulator [37]. More-
over, its gravity terms due to the weight of the tool should be
estimated and compensated during the motion to reproduce
only tool-environment interaction force on the hand of the
surgeon. Two techniques have been performed to achieve
tool gravity identification: CF and ANNs, separately. Also,
the performance of both are compared on the same opera-
tional procedure in terms of accuracy. Once the tool gravity
force is identified, force sensor calibration using SVD is
implemented to transform the force information into robot
coordination frame to achieve accurate force feedback mea-
surement from the remote site to the local site. Based on the
above methodology, a final bilateral teleoperation demon-
stration for surgical tasks is used to verify the proposed
methodology.

A. WORKSPACE MAPPING
Workspace mapping, shown in Figure 2, is performed to
map the motion trajectories of the haptic manipulator into a
reachable workspace for the slave robot on the remote site.
As shown in Figure 2, the slave robot is controlled by the
master manipulator through teleoperation. An interpolation

FIGURE 3. Force sensor installation .

method is introduced to enable the robot to achieve the
desired position Xd ∈ R3 from the end-effector position
X ∈ R3 following the master manipulator smoothly [38]:

Xd = −k0
(
X −em TXr

)
+
e
m T Ẋr (2)

where e
mT =

o
m T e

oT is the transformation matrix from the
master frame to the slave tool frame, as displayed in Figure 2.
Xr ∈ R3 is the motion trajectory of the master manipulator.
k0 > 0 is a positive constant coefficient.

B. TOOL GRAVITY IDENTIFICATION
The force sensor is mounted between the slave end-effector
to transmit the interaction force from the slave robot to the
surgeon, as exhibited in Figure 3. The tool is attached to
the force sensor, which measures the interaction force with
the environment.

As discussed before, the force sensor cannot measure the
interaction forces due to the influence of the gravity force of
the robot tool, which varies with the tool direction. It means
that the surgeon cannot accurately perceive the delicate
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interactions between the surgical tool and organ tissue in the
patients’ abdomen. Therefore, tool gravity identification for
the force sensor is required to compensate for the influence
of the tool weight. The force acquired by the force sensor can
be expressed as follows:

FS = FToolGravity + FInteraction (3)

where FToolGravity ∈ R3 is the force generated by tool gravity,
while FInteraction ∈ R3 is the interaction forces between the
tool-tip and the organ tissue in the abdomen.

It should be noticed that the tool’s gravity force on the force
sensor is varying with the robot arm placement, in particular
with the orientation of the tool. During the whole procedure,
the orientation of the tool is the only variables that can influ-
ence the output of the force sensor. It is essential to consider
gravity identification depending on the orientation of the tool.
The relation can be modeled based on the orientation of the
tool and its corresponding force sensor output.

1) CURVE FITTING BASED TOOL GRAVITY IDENTIFICATION
One of the most efficient techniques to model the mathe-
matical equation and to predict the unknown values is the
CF. In the related works, the Least-Squares method has been
introduced to fit the data mapping frequently. [39].

The mathematical model of the influence of the gravity
force on the force sensor, shown in Figure 4, depending on
the tool orientation, can be defined as follows:

Fx = −mg ∗ sin (θ1) ∗ cos (θ2 + d)+ a
Fy = −mg ∗ sin (θ1) ∗ sin (θ2 + d)+ b
Fz = mg ∗ cos (θ1)+ c

(4)

where Fx , Fy and Fz are the outputs of the force sensor. The
unknown constant parameters are the massm, the coefficients
a, b, and c. g represents gravity which is 9.8 m/s2. d is a
deviation error angle around z axis from the tool installation.
The angles θ1 and θ2 are computed from the orientation angles
of the tool pose, shown in Figure 4. It should be noticed that
the relation between the angles θ1, θ2, and the Euler angles
θx , θy, θz is a mapping relation, where θ1 is determined by θz
while θ2 is determined by θx and θy.

FIGURE 4. Tool gravity on the force sensor.

If an enough data set is collected, the CF is capable of
estimating accurately the constant parameters existing in
Eq. (4). However, due to the installation of the tool in the
practical application cannot be in a straight way, there should

be a deviation error on θ1. Hence the proposed mathematical
model is not able to project the gravity force of the tool on the
force sensor in an accurate way. As a parametric regression,
the accuracy of CF relies on the prior knowledge of the
mathematical system model, while it is difficult to obtain an
accurate model considering the mechanical error. Hence, it is
difficult to achieve precise mapping between the gravity force
and the orientation angles.

2) ANN-BASED TOOL GRAVITY IDENTIFICATION
Neural Networks (NNs) [40] provide a new solution for the
modeling of linear and nonlinear curve fitting problems [41],
which does not require the dynamic model of the system and
has the learning capacity to model any complex function and
nonlinear relationships. [42].

The force value of the force sensor varies due to the ori-
entation of the tool. Since the regression model between the
tool orientation and the force projected on the force sensor has
been introduced and solved using CF, the regression function
can be redefined by mapping the Euler angles (θx , θy, θz) to
the projected force on the force sensor (Fx ,Fy,Fz) can be
defined as:

F = f (θx , θy, θz) (5)

It is known that ANNs is capable of approximating
any function, regardless of its linearity. In this paper, a
feed-forward back-propagation ANNs with one hidden layer
was implemented to train the regression mapping function.
According to the input and prediction output, Figure 5 por-
trays the diagram of the proposedNN to estimate themapping
relation, where the inputs θx , θy and θz represent Euler angles
of end-effector and Fx , Fy and Fz are the target outputs of our
ANNs model.

FIGURE 5. Feedforward NN architecture for force prediction.

The performances of the regression network was
determined by the number of neurons of the hidden
layer In this paper, the nonlinear least-squares algorithm
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Levenberg-Marquardt algorithm is adopted to calculate the
maximum or minimum gradient. It has the local convergence
of the Gauss-Newtonmethod tominimize those functions and
has a gradient descent method of global characteristics to look
for a new search direction. The training of the neural network
and the performance index is set as the mean square error.
The final NN model can be written as:

Y = W2 · (
1

1+ e−(B1+W1X)
)+ B2 (6)

Where X = [θx , θy, θz] is the input matrix, B1 =

[b1; b2; . . . ; bj] is the bias matrix of the first layer, j is the
neuron numbers andB2 ∈ R3×1 is the bias of the output layer,
W1 ∈ Rj×3 and W2 ∈ R3×j are the corresponding weight
matrix. The initial condition of the weights and bias are ini-
tialized to a small random number. In this paper, parameters
move in the opposite direction of the error to reduce the mean
square error to get the minimum value. The updating law to
determine the weight matrix adopted the increment way.

The updated law of theweight is given byGradient Descent
rule using the following equation:

W i,j(t + 1) = W i,j(t)− η
∂L
∂W i,j

(7)

where, η is the learning rate and L is the loss function. In this
article, η = 0.01. To improve the effectiveness for training
the ANNs model, we choose 1.05 ratio to increase learning
rate and set the maximum validation failures is 6.

The training set was used to update the weights of the
neurons with the predefined number of iterations. When the
NN converged to its final configuration, the testing set was
used to assess its actual ability to predict force sensor outputs
based on Euler angles.

C. FORCE SENSOR CALIBRATION
The force sensor is a particularly significant source of feed-
back in robotic applications to measure forces along x, y and z
axes at robot’s end-effector in order to increase the sensitivity
of the surgeon [43]. Force sensor should be calibrated in the
system to project the measured force into the robot reference
frame. SVD has been successfully applied to a wide variety
of domains [44] to solve linear algebra transformation. In this
paper, SVD [45] is adopted to figure out the transforma-
tion (calibration) matrix f

eT between the slave’s end-effector
and force sensor, reference frames, as depicted in Figure 6.
Figure 7 demonstrates the input-output of SVD calibration
method, where FR ∈ R3, FS ∈ R3, are the robot and sensor
forces, respectively. feT ∈ R4×4 is the obtained calibration
matrix.

D. BILATERAL TELEOPERATION
The control framework that can offer such a capacity in
robot-assisted surgery is called bilateral control which means
the exchange of information (position, velocity, and force)
between master and slave manipulators bi-directionally in
real-time via a communication network [46], as demon-
strated in Figure 8. Bilateral teleoperation can bring the

FIGURE 6. Representation of robot and force sensor reference frames
and transformation.

FIGURE 7. Force sensor calibration.

robot-assisted surgery to a new level with furnishing signif-
icant precision and improvement with dexterity even in a
minimally invasive manner.

IV. EXPERIMENT VALIDATION AND RESULTS
A. SYSTEM OVERVIEW
A brief description of bilateral teleoperation system devel-
oped in this project is shown in Figure 9. A redundant robot
(LWR4+, KUKA, Germany) serves as the slave manipula-
tor torque-controlled through Fast Research Interface (FRI),
which could provide direct low-level real-time access to
the robot controller (KRC) at rates of up to 1 kHz [15].
The teleoperation scheme implements bilateral teleoperation
control with a master device (Sigma 7, Force Dimension,
Switzerland) and a switch pedal [17]. The software system
was developed with OROCOS (Open Robotic Control Soft-
ware, http://www.orocos.org/) application with a real-time
Xenomai-patched Linux kernel and ROS (Robot Operating
System, http://www.ros.org/) kinetic in Ubuntu. ROS vision
node and OROCOS torque controller were executed on sepa-
rate computers with UDP communication between each other
to guarantee control frequency: the control loop and the vision
ROS node was executed on separate computers. The system
consists of:
• a 7 DoFs master haptic interface (Sigma.7, Force
Dimension, Switzerland) and a foot pedal [47], imple-
menting a 3D Cartesian position control.

• a 7 DoFs LightWeight robotic arm (LWR4+, KUKA,
Germany) as a slave device.

• a 6-axis force sensor (M8128C6, SRI, China) [48] that
has the purpose of measuring interaction force between
the surgical tool-tip and the environment.
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FIGURE 8. Typical Teleoperated Surgery Framework. The surgeon sitting on the local site uses the master manipulator and foot pedal to drive the motion
of the tool of the surgical robot (slave) from the actual point X to the desired point Xd . Fm is the force applied to the master manipulator. Xr , Ẋr ∈ Rm are
the desired Cartesian position and velocity in the master frame, respectively. Fs is the force applied to the slave manipulator. X ∈ Rm, Ẋ ∈ Rm are the
actual Cartesian position and velocity in the slave frame, respectively. Fe is the external force on the end-effector from the environment.

FIGURE 9. Overview of the teleoperated surgical robot control system.

• a HD endoscopic camera which allows the surgeon to
view the environment.

To conduct the identification procedure, two experiments
were performed to acquire the data: the training dataset
(41729 samples) and the testing dataset (32047 samples).
Then we applied the obtained identification models online to
eliminate the gravity force of the tool separately. For each
method, we collected data for calibration (4164 samples for
CF and 4115 samples for ANNs). The detailed procedure and
results are shown in the following parts.

B. CALIBRATION AFTER CURVE FITTING
IMPLEMENTATION
The first method used for tool gravity identification is CF.
As mentioned in section III, gravity identification is imple-
mented concerning current end-effector orientation. Firstly,
hands-on control is activated to allow the user to move the
robot arm without touching the robot tool and the force
sensor. In this way, two groups of data are collected for esti-
mation and validation, as depicted in Figure 10. By utilizing
the CF technique, the constant unknown parameter m, and
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FIGURE 10. Hands-on motion of robot for data collection of orientation
angles and force sensor measurement in free motion.

the constant coefficients a, b and c can be obtained the first
group of sampled data (41729 samples). Then, the obtained
parameters are placed in the mathematical model to predict
the force on the force sensor, which is expressed as follows:

Fx,estimated = −0.3434 ∗ g ∗ sin (θ1) ∗ cos (θ2 + 1.401)

+ 0.6

Fy,estimated = −0.3434 ∗ g ∗ sin (θ1) ∗ sin (θ2 + 1.401)

+ 1.1

Fz,estimated = 0.3434 ∗ g ∗ cos (θ1)+ 2.0 (8)

In order to verify if the obtained model (8) is able to fit the
real measurements acquired by the force sensor, the second
groups were used for validation (32047 samples) The error
between the real force and estimate force is analyzed.

Figures 11 and 12 depict the difference between the real
and estimated force along the different axis. After the gravity
force FToolGravity is identified using CF technique, force sig-
nals data are acquired from both robot and sensor, as shown
in Figure 13, to perform force sensor calibration so as to

FIGURE 11. Real and estimated tool gravity component.

FIGURE 12. Real and estimated tool gravity component with different
amount of data.

FIGURE 13. Hand-force applied by medical staff in different poses.

couple both signals by means of SVD method. Results of
calibration are exhibited in Figure 14.

FIGURE 14. Force signals of the robot and calibrated sensor.

C. CALIBRATION AFTER ANNs IMPLEMENTATION
Except for using CF, ANNs is also utilized to modeling the
tool gravity force. As mentioned in Section III, the number
of neurons in the hidden layer is determined by assessing
the performances of the regression networks. We adopt a
different number of neurons to train several ANNs models.
The root mean square error (RMSE) is used to evaluate the
performance of the ANNs model, which can be calculated by
Equation 9.

ε =

√∑n
i=1(F̂i − F̃i)2

n
(9)

where F̂ is the predicted force and F is the actual measured
force (real value). i is the order of input and output sequences,
and n is the total sampling number.

Table 1 enumerates the results of the average obtained three
RMSEs on the training and testing datasets, namely

ε̄ = (εx + εy + εz)/3 (10)

In the training procedure, the average of RMSE is reduced
along with the increase in the number of neurons in the
hidden layer. However, in the testing processing, the changes
of mean RMSE reaches to the lowest value (i.e., 0.1030 N)
when the number of neurons is 30, then becomes worse. This
phenomenon is caused by the under-fitting and over-fitting of
the ANNs algorithm. So, the best ANNs regression model is
the one with 30 neurons in the hidden layer.
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TABLE 1. Results of network training with a different number of neurons
in the hidden layer.

Figures 15 and 16 show predicted force curves by the
ANNs model (30 neurons) and real forces on the training and
testing dataset, respectively.

FIGURE 15. The comparison results between the predicted results by the
ANNs model (30 neurons) and the real forces on the training dataset.

FIGURE 16. The comparison results between the predicted results by the
ANNs model (30 neurons) and the real forces on the testing dataset.

As mentioned above, after identifying tool gravity compo-
nent by ANNs, we perform the force sensor calibration again
by collecting another data (see Figure 13) and then applying
the same method SVD. Results of calibration are depicted
in Figure 17.

D. DISCUSSION
As mentioned above, CF and ANNs regression methods were
used for tool gravity identification. Furthermore, force sensor
calibration based on SVD method was applied after tool
gravity compensation. The comparison verification has been

FIGURE 17. Calibration of force sensor after tool gravity identification by
the ANNs model.

implemented to validate the best efficient model for tool grav-
ity identification. Table 2 lists the tri-axis RMSEs computed
by CF and ANNs (30 neurons) methods after tool gravity
identification. The ’overall’ row is the sum of obtained three
RMSEs.

TABLE 2. The obtained RMSEs by using CF and ANNs (30 neurons) model
on the training set.

It is demonstrated that identifying tool gravity component
by the ANNs (30 neurons) model can obtain the high accurate
than CF model. The overall error acquired by ANNs model is
only 0.208N , while CF model gets 1.233N . The third RMSE
is lower than the others, because that the mathematical model
Eq. (4) for mapping the z channel forceFz is too much simple
than the other two channels. It only needs one Euler angle
θ1, which is easy to be tracked. Similarly, table 3 displays
the comparison results of RMSE obtained by CF and ANNs
models on the testing dataset.

TABLE 3. The obtained RMSEs by using CF and ANNs (30 neurons) model
on the testing set.

The calibration errors prove that the regression perfor-
mance on the testing set is worse than the training set.
Notably, the CF model almost loses the fitting with an overall
error of 5.684 N . The ANNs model can also map the Euler
angles to the forces with a lower overall RMSE 0.309N ,
which is close to the above results validated on the training
set. Although the obtained errors prove that the ANNs model
(30 neurons) is the best method to predict new forces, the CF
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model will be a fast method for predicting the forces. Because
it has a simple regression function and fewer parameters to
calculate. So, if the accuracy is not a compulsory require-
ment, the CF model can save some computational time for
regression.

Attaining the two issues of gravity identification and sensor
calibration, this enables us to achieve transparency in teleop-
erated surgery. Figure 18 shows the force tracking between
master and slave devices, while Figure 19 shows Cartesian
positions tracking. It demonstrates that the proposed method-
ology could achieve transparency in teleoperated surgery.

FIGURE 18. Master and slave forces during free motion and interaction.

FIGURE 19. The tri-axis of cartesian position errors.

V. CONCLUSION AND FUTURE WORK
In this paper, the ANNs model enhanced method is pre-
sented for surgical tool gravity identification and force sen-
sor calibration in bilateral teleoperation with force sensing.
Firstly, the tool gravity force was identified by CF and
ANNs, separately. Afterward, force sensor calibration was
implemented using SVD. Results from the comparison show
that residual error of the calibration of force sensor after
tool gravity identification is improved more than without
tool gravity identification. By comparison, ANNs is able to
model the mapping relations without the prior knowledge
of the mathematical model between the orientation angles
and the force. However, since it is a non-parametric ’black
box’, it lacks the knowledge of the dynamics of the system,
and its accuracy performance may be worse than the CF
which is based on the mathematical model. Furthermore,
the comparison errors prove that ANNs methods can get
higher accuracy than the CF model. So the ANNs model
with 30 neurons in the hidden layer is the best model for
predicting new forces. A preliminary practical experiment

has been performed to investigate the transparency perfor-
mance of bilateral teleoperation. It can be concluded that the
proposed tool gravity identification and calibration method
for bilateral teleoperation can be easily replicated on other
general robots since the model depends on the rotation of
the robots instead of the robot joints angles. Future work
will consider more challenging problems (e.g., dead-zone and
time-delay) in our the bilateral teleoperation control frame-
work. The system stability and tracking accuracymight not be
guaranteed under these situations, which are a precondition
for safety in a surgical operation.
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